Abstract With recent progress in modeling liver organogenesis and regeneration, the lack of vasculature is becoming the bottleneck in progressing our ability to model human hepatic tissues in vitro. Here, we introduce a platform for routine grafting of liver and other tissues on an in vitro grown microvascular bed. The platform consists of 64 microfluidic chips patterned underneath a 384-well microtiter plate. Each chip allows the formation of a microvascular bed between two main lateral vessels by inducing angiogenesis. Chips consist of an open-top microfluidic chamber, which enables addition of a target tissue by manual or robotic pipetting. Upon grafting a liver microtissue, the microvascular bed undergoes anastomosis, resulting in a stable, perfusable vascular network. Interactions with vasculature were found in spheroids and organoids upon 7 days of co-culture with space of Disse-like architecture in between hepatocytes and endothelium. Veno-occlusive disease was induced by azathioprine exposure, leading to impeded perfusion of the vascularized spheroid. The platform holds the potential to replace animals with an in vitro alternative for routine grafting of spheroids, organoids, or (patient-derived) explants.
Abstract Pancreatic cancer is one of the deadliest tumors due to the limited treatment options and late diagnosis. Here, we describe a novel high throughput drug screening platform combining a microfluidic based 3D-culture plate, and the recently described pancreatic ductal adenocarcinoma (PDAC) derived organoids. The microfluidic plate is a high throughput microfluidic 3D cell culture platform, supporting physiologically relevant models with a minimal requirement of cell material and enabling a wide range of flow and co-culture options (e.g. with blood vessels). Organoids were derived from human PDAC xenografts and seeded in the microfluidic plate. The low amount of tissue material required (4000 cells per chip) and the high number of replicates on one plate (n=96 on a standard microtiter format plate) renders the microfluidic plate an efficient and cost-effective platform for drug screening and toxicity assays on complex, 3D models. Organoids were exposed to various chemotherapeutic drugs for 72 hours. The viability of the organoids before and after drug treatment is monitored with standard viability assays and subsequently used to generate dose response curves. In conclusion, we showed that the microfluidic plate can be used for high throughput drug screening assays and toxicity screening, and demonstrated its compatibility with human pancreatic PDAC derived organoids. Citation Format: Bart Kramer, Wijnand van Paassen, Luuk de Haan, Henriette Lanz, Jos Joore. A novel high-throughput microfluidic drug screening platform using pancreatic ductal adenocarcinoma derived organoids [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 41.
Breast cancer is the most common invasive cancer among women. Currently, there are only a few models used for therapy selection, and they are often poor predictors of therapeutic response or take months to set up and assay. In this report, we introduce a microfluidic OrganoPlate® platform for extracellular matrix (ECM) embedded tumor culture under perfusion as an initial study designed to investigate the feasibility of adapting this technology for therapy selection. The triple negative breast cancer cell lines MDA-MB-453, MDA-MB-231 and HCC1937 were selected based on their different BRCA1 and P53 status, and were seeded in the platform. We evaluate seeding densities, ECM composition (Matrigel®, BME2rgf, collagen I) and biomechanical (perfusion vs static) conditions. We then exposed the cells to a series of anti-cancer drugs (paclitaxel, olaparib, cisplatin) and compared their responses to those in 2D cultures. Finally, we generated cisplatin dose responses in 3D cultures of breast cancer cells derived from 2 PDX models. The microfluidic platform allows the simultaneous culture of 96 perfused micro tissues, using limited amounts of material, enabling drug screening of patient-derived material. 3D cell culture viability is improved by constant perfusion of the medium. Furthermore, the drug response of these triple negative breast cancer cells was attenuated by culture in 3D and differed from that observed in 2D substrates. We have investigated the use of a high-throughput organ-on-a-chip platform to select therapies. Our results have raised the possibility to use this technology in personalized medicine to support selection of appropriate drugs and to predict response to therapy in a real time fashion.
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers due to a high chemoresistance and poor vascularization, which results in an ineffective systemic therapy. PDAC is characterized by a high intratumoral pressure, which is not captured by current 2D and 3D in vitro models. Here, we demonstrated a 3D microfluidic interstitial flow model to mimic the intratumoral pressure in PDAC. We found that subjecting the S2-028 PDAC cell line to interstitial flow inhibits the proliferation, while maintaining a high viability. We observed increased gemcitabine chemoresistance, with an almost nine-fold higher EC50 as compared to a monolayer culture (31 nM versus 277 nM), and an alleviated expression and function of the multidrug resistance protein (MRP) family. In conclusion, we developed a 3D cell culture modality for studying intratissue pressure and flow that exhibits more predictive capabilities than conventional 2D cell culture and is less time-consuming, and more scalable and accessible than animal models. This increase in microphysiological relevance might support improved efficiency in the drug development pipeline.
Pancreatic cancer is one of the deadliest tumors due to the limited treatment options and late diagnosis. Here, we describe a novel high throughput drug screening platform combining a microfluidic based 3D-culture plate, and the recently described pancreatic ductal adenocarcinoma (PDAC) derived organoids. The microfluidic plate is a high throughput microfluidic 3D cell culture platform, supporting physiologically relevant models with a minimal requirement of cell material and enabling a wide range of flow and co-culture options (e.g. with blood vessels). Organoids were derived from human PDAC xenografts and seeded in the microfluidic plate. The low amount of tissue material required (4000 cells per chip) and the high number of replicates on one plate (n=96 on a standard microtiter format plate) renders the microfluidic plate an efficient and cost-effective platform for drug screening and toxicity assays on complex, 3D models. Organoids were exposed to various chemotherapeutic drugs for 72 hours. The viability of the organoids before and after drug treatment is monitored with standard viability assays and subsequently used to generate dose response curves. In conclusion, we showed that the microfluidic plate can be used for high throughput drug screening assays and toxicity screening, and demonstrated its compatibility with human pancreatic PDAC derived organoids.Citation Format: Bart Kramer, Wijnand van Paassen, Luuk de Haan, Henriette Lanz, Jos Joore. A novel high-throughput microfluidic drug screening platform using pancreatic ductal adenocarcinoma derived organoids [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 41.
In early systemic sclerosis (Scleroderma, SSc), the vasculature is impaired. Although the exact etiology of endothelial cell damage in SSc remains unclear, it is hypothesized that endothelial to mesenchymal transition (EndoMT) plays a key role. To perform physiologically relevant angiogenic studies, we set out to develop an angiogenesis-on-a-chip platform that is suitable for assessing disease parameters that are relevant to SSc and other vasculopathies. In the model, we substituted Fetal Bovine Serum (FBS) with Human Serum without impairing the stability of the culture. We showed that 3D microvessels and angiogenic factor-induced sprouts exposed to key pro-inflammatory and pro-fibrotic cytokines (TNFα and TGFβ) undergo structural alterations consisting of destructive vasculopathy (loss of small vessels). We also showed that these detrimental effects can be prevented by compound-mediated inhibition of TGFβ-ALK5 signaling or addition of a TNFα neutralizing antibody to the 3D cultures. This demonstrates that our in vitro model is suitable for compound testing and identification of new drugs that can protect from microvascular destabilization or regression in disease-mimicking conditions. To support this, we demonstrated that sera obtained from SSc patients can exert an anti-angiogenic effect on the 3D vessel model, opening the doors to screening for potential SSc drugs, enabling direct patient translatability and personalization of drug treatment.