Opioids are widely used to treat millions suffering from pain, but their analgesic utility is limited due to associated side effects. Herein we report the development and evaluation of a chemical probe exhibiting analgesia and reduced opioid-induced side effects. This compound, kurkinorin (5), is a potent and selective μ-opioid receptor (MOR) agonist (EC50 = 1.2 nM, >8000 μ/κ selectivity). 5 is a biased activator of MOR-induced G-protein signaling over β-arrestin-2 recruitment. Metadynamics simulations of 5's binding to a MOR crystal structure suggest energetically preferred binding modes that differ from crystallographic ligands. In vivo studies with 5 demonstrate centrally mediated antinociception, significantly reduced rewarding effects, tolerance, and sedation. We propose that this novel MOR agonist may represent a valuable tool in distinguishing the pathways involved in MOR-induced analgesia from its side effects.
Methamphetamine is a highly addictive central nervous system stimulant with increasing levels of abuse worldwide. Alterations to mRNA and miRNA expression within the mesolimbic system can affect addiction-like behaviors and thus play a role in the development of drug addiction. While many studies have investigated the effects of high-dose methamphetamine, and identified neurotoxic effects, few have looked at the role that persistent changes in gene regulation play following methamphetamine self-administration. Therefore, the aim of this study was to identify RNA changes in the ventral tegmental area following methamphetamine self-administration. We performed microarray analyses on RNA extracted from the ventral tegmental area of Sprague–Dawley rats following methamphetamine self-administration training (2 h/day) and 14 days of abstinence. We identified 78 miRNA and 150 mRNA transcripts that were differentially expressed (fdr adjusted p < 0.05, absolute log2 fold change >0.5); these included genes not previously associated with addiction (miR-125a-5p, miR-145 and Foxa1), loci encoding receptors related to drug addiction behaviors and genes with previously recognized roles in addiction such as miR-124, miR-181a, DAT and Ret. This study provides insight into the effects of methamphetamine on RNA expression in a key brain region associated with addiction, highlighting the possibility that persistent changes in the expression of genes with both known and previously unknown roles in addiction occur.
Tobacco excise taxes are known to be effective in reducing smoking at the population level, but less research has examined how individual smokers respond to changes in tax policy. We ask whether price elasticities for individual smokers, derived from simulated demand curves obtained with a cigarette purchase task (CPT), can predict changes in smoking after a tax increase.
Method
Smokers (N=357) were recruited from four New Zealand cities and interviewed before and after a 10% tobacco excise tax increase.
Results
Simulated demand curves from the CPT were curvilinear and well described by an exponential model. Smokers reported significant reductions in cigarettes/day and addiction scores at Wave 2 (n=226). Local elasticities derived from the demand curves significantly predicted decreases in cigarettes/day after controlling for covariates.
Conclusions
Elasticities from simulated demand curves can predict decreases in consumption for individual smokers after an excise tax increase. Understanding individual differences in tobacco demand curves may help to predict how different groups of smokers will respond to price increases.
Previous structure-activity studies on the neoclerodane diterpenoid salvinorin A have demonstrated the importance of the acetoxy functionality on the A-ring in its activity as a κ-opioid receptor agonist. Few studies have focused on understanding the role of conformation in these interactions. Herein we describe the synthesis and evaluation of both flexible and conformationally restricted compounds derived from salvinorin A. One such compound, spirobutyrolactone 14, was synthesized in a single step from salvinorin B and had similar potency and selectivity to salvinorin A (EC50 = 0.6 ± 0.2 nM at κ; >10000 nM at μ and δ). Microsomal stability studies demonstrated that 14 was more metabolically resistant than salvinorin A. Evaluation of analgesic and anti-inflammatory properties revealed similar in vivo effects between 14 and salvinorin A. To our knowledge, this study represents the first example of bioisosteric replacement of an acetate group by a spirobutyrolactone to produce a metabolically resistant derivative.
D(3) dopamine receptors are expressed by dopamine neurons and are implicated in the modulation of presynaptic dopamine neurotransmission. The mechanisms underlying this modulation remain ill defined. The dopamine transporter, which terminates dopamine transmission via reuptake of released neurotransmitter, is regulated by receptor- and second messenger-linked signaling pathways. Whether D3 receptors regulate dopamine transporter function is unknown. We addressed this issue using a fluorescent imaging technique that permits real time quantification of dopamine transporter function in living single cells. Accumulation of the fluorescent dopamine transporter substrate trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium (ASP(+)) in human embryonic kidney cells expressing human dopamine transporter was saturable and temperature-dependent. In cells co-expressing dopamine transporter and D3 receptors, the D2/D3 agonist quinpirole produced a rapid, concentration-dependent, and pertussis toxin-sensitive increase of ASP(+) uptake. Similar agonist effects were observed in Neuro2A cells and replicated in human embryonic kidney cells using a radioligand uptake assay in which binding to and activation of D3 receptors by [(3)H]dopamine was prevented. D3 receptor stimulation activated phosphoinositide 3-kinase and MAPK. Inhibition of either kinase prevented the quinpirole-induced increase in uptake. D3 receptor activation differentially affected dopamine transporter function and subcellular distribution depending on the duration of agonist exposure. Biotinylation experiments revealed that the rapid increase of uptake was associated with increased cell surface and decreased intracellular expression and increased dopamine transporter exocytosis. In contrast, prolonged agonist exposure reduced uptake and transporter cell surface expression. These results demonstrate that D3 receptors regulate dopamine transporter function and identify a novel mechanism by which D3 receptors regulate extracellular dopamine concentrations.
The leaves of Mitragyna speciosa (kratom), a plant native to Southeast Asia, are increasingly used as a pain reliever and for attenuation of opioid withdrawal symptoms. Using the tools of natural products chemistry, chemical synthesis, and pharmacology, we provide a detailed in vitro and in vivo pharmacological characterization of the alkaloids in kratom. We report that metabolism of kratom's major alkaloid, mitragynine, in mice leads to formation of (a) a potent mu opioid receptor agonist antinociceptive agent, 7-hydroxymitragynine, through a CYP3A-mediated pathway, which exhibits reinforcing properties, inhibition of gastrointestinal (GI) transit and reduced hyperlocomotion, (b) a multifunctional mu agonist/delta-kappa antagonist, mitragynine pseudoindoxyl, through a CYP3A-mediated skeletal rearrangement, displaying reduced hyperlocomotion, inhibition of GI transit and reinforcing properties, and (c) a potentially toxic metabolite, 3-dehydromitragynine, through a non-CYP oxidation pathway. Our results indicate that the oxidative metabolism of the mitragynine template beyond 7-hydroxymitragynine may have implications in its overall pharmacology in vivo.