Cadmium has become the foremost inorganic pollutant in farmland in China. It is widely accumulated in karst areas in southwest China, especially in Guangxi Province. In this study, vertical soil profiles, rice grains and corresponding root-soil samples were collected in Guangxi. The Cd contents of soil and rice grain samples and several soil properties, including organic matter, Fe2O3, Al2O3, CaO, MgO, SiO2 contents and pH were tested. Meanwhile, sequential extraction procedure were used to analysis the chemical fractions of Cd in root-soil samples. Based on the measured data, influencing factors on bioaccumulation of Cd and its contamination risk in study area were discussed. The results indicate that the bioaccumulation and mobility of Cd from soil to rice grain are restrained by high soil pH, high contents of organic matter, clay mineral and carbonate. Guangxi has strong development of karst landform, with the continuous process of soil formation, the activity of Cd in the soils in such areas will gradually become stable. In general, the environmental risk of soil cadmium contamination in karst areas of Guangxi is relatively low. But preventing soil acidification is the significant measure to prevent the environmental risk of it.
Various petrographic features and geochemical characteristics indicative of disequilibrium are preserved in plagioclase phenocrysts from basaltic to andesitic lavas in East Junggar, northwest China. These characteristics indicate that they crystallized in a magma chamber, which was replenished by less differentiated and high‐temperature magmas. The petrographic and geochemical features of the plagioclase phenocrysts are interpreted to record responses to changes in temperature, composition and mechanical effect during magma replenishment. Distinct rare earth element (REE) patterns between cores and rims of the same plagioclase crystal suggest derivation from two end‐member magmas. From core to rim, plagioclase phenocrysts commonly display sharp fluctuations of anorthite (An) content up to 20, which either correspond to reverse zoning associated with ovoidal cores and resorption surface (P1), or normal zoning with euhedral form and no resorption surface (P2). Plagioclase crystals with diverse textures and remarkably different An content coexist on the scale of a thin‐section. Cores of these plagioclases in each sample display a bimodal distribution of An content. From core to rim in P1, concentrations of FeO T and Sr increase remarkably as An content increases. During magma replenishment, pre‐existing plagioclase phenocrysts in the andesitic magma, which were immersed into hotter and less differentiated magmas, were heated and resorbed to form ovoidal cores, and then were overgrown by a thin rim with much higher contents of An, FeO T and Sr. However, pre‐existing plagioclase phenocrysts in the basaltic magma were injected into cooler and more evolved magmas, and were remained as euhedral cores, which were later enclosed by oscillatory zoned rims with much lower contents of An, Sr and Ba.
Heavy metal pollution not only causes detrimental effects on the environment but also poses threats to human health; thus, it is crucial to monitor the heavy metal content in the soil. Hyperspectral technology, characterized by high spectral resolution, rapid response, and non-destructive detection, is widely employed in soil composition monitoring. This study aims to investigate the effects of dimensionality reduction methods on the performance of hyperspectral inversion. To this end, 56 soil samples were collected in Daye, with the corresponding hyperspectral data acquired by the advanced ASD Fieldspec4 instrument. We employed the linear dimensionality reduction method, i.e., the principal component analysis (PCA), and non-linear method in terms of kernel PCA (KPCA) with polynomial, radial basis function (RBF), and sigmoid kernels to reduce the dimensionalities of original spectral reflectance and that processed by first-derivative transformation (FDT). Building upon this foundation, we applied the Adaptive Boosting (AdaBoost) algorithm for inverting the soil copper (Cu) content. The performance of each inversion model was evaluated by evaluation indices in terms of the coefficient of determination (R2), root-mean-square error (RMSE), and residual prediction deviation (RPD). The results revealed that the KPCA with polynomial kernel function applied to the FDT-based spectra could yield the optimal inversion accuracy, with corresponding R2, RMSE, and RPD being 0.86, 21.47 mg·kg−1, and 2.72, respectively. This study demonstrates that applying the FDT with KPCA processing can significantly improve the accuracy of the hyperspectral inversion for soil Cu content, providing a potential approach for monitoring heavy metal pollution using hyperspectral technology.
Abstract Background Syntrichia caninervis is a typical desiccation tolerant moss that is a dominant species forming biological soil crusts in the Gurbantunggut Desert. This study investigated the effect of different explants on regeneration potential by propagating them on peat pellet. Result Juvenile and green leaves can regenerate secondary protonema within one week and shoots in one-half month in peat pellet. Rhizoids have a great ability to regenerate, and similar to leaf regeneration, secondary protonema is the dominant type of regenerant. The process of stem regeneration is similar to that of whole gametophytes. Stems are the most important integral body part during propagation. The whole gametophyte is the best materials for rapidly propagating gametophyte on peat pellet. Conclusion This article improves the state of our current knowledge of desiccation tolerant moss cultivation, highlighting efforts to effectively obtain a large number of gametophytes through different explant parts. This work provides a useful resource for the study of S. caninervis as well as biocrust restoration.
To illuminate the migration and transformation of selenium (Se) in the igneous rock-soil-rice system, 285 pairs of rhizosphere soil and rice samples were collected from the granitoid and basalt areas in Hainan Province, South China. The contents of Se in soils derived from granitoid and basalt are, respectively, 0.19±0.12 mg/kg and 0.34±0.39 mg/kg, which are much higher than Se contents in granitoid and basalt. Selenium shows remarkable enrichment from granitoid and basalt to soils. The mobile fraction of Se in soils derived from granitoid is 0.0100±0.0034 mg/kg, which is significantly higher than that of basalt (0.0058±0.0039 mg/kg). Although soil derived from basalt shows higher Se contents, Se contents in rice samples, mobile fractions of Se in soils, and biological concentration factor (BCF) is similar or even lower than that from granitoid. Basalt consist of calcic plagioclase and pyroxene, and are much richer in Fe, Al, and Ca than granitoid. Correspondingly, the basalt-derived soils have higher goethite, hematite, kaolinite, cation exchange capacity (CEC) content, and higher pH than the granitoid-derived soils, which result in higher adsorption capacity for Se and relatively lower Se bioavailability. Soils derived from granitoid and basalt in tropical regions are beneficial to produce Se-rich rice.
The early light-induced proteins (ELIPs) are postulated to act as transient pigment-binding proteins that protect the chloroplast from photodamage caused by excessive light energy. Desert mosses such as Syntrichia caninervis, that are desiccation-tolerant and homoiochlorophyllous, are often exposed to high-light conditions when both hydrated and dry ELIP transcripts are accumulated in response to dehydration. To gain further insights into ELIP gene function in the moss S. caninervis, two ELIP cDNAs cloned from S. caninervis, ScELIP1 and ScELIP2 and both sequences were used as the basis of a transcript abundance assessment in plants exposed to high-light, UV-A, UV-B, red-light, and blue-light. ScELIPs were expressed separately in an Arabidopsis ELIP mutant Atelip. Transcript abundance for ScELIPs in gametophytes respond to each of the light treatments, in similar but not in identical ways. Ectopic expression of either ScELIPs protected PSII against photoinhibition and stabilized leaf chlorophyll content and thus partially complementing the loss of AtELIP2. Ectopic expression of ScELIPs also complements the germination phenotype of the mutant and improves protection of the photosynthetic apparatus of transgenic Arabidopsis from high-light stress. Our study extends knowledge of bryophyte photoprotection and provides further insight into the molecular mechanisms related to the function of ELIPs.