Standard maximum likelihood estimation cannot be applied to discrete energy-based models in the general case because the computation of exact model probabilities is intractable. Recent research has seen the proposal of several new estimators designed specifically to overcome this intractability, but virtually nothing is known about their theoretical properties. In this paper, we present a generalized estimator that unifies many of the classical and recently proposed estimators. We use results from the standard asymptotic theory for M-estimators to derive a generic expression for the asymptotic covariance matrix of our generalized estimator. We apply these results to study the relative statistical efficiency of classical pseudolikelihood and the recently-proposed ratio matching estimator.
The fully connected layers of a deep convolutional neural network typically contain over 90% of the network parameters, and consume the majority of the memory required to store the network parameters. Reducing the number of parameters while preserving essentially the same predictive performance is critically important for operating deep neural networks in memory constrained environments such as GPUs or embedded devices.
In this paper we show how kernel methods, in particular a single Fastfood layer, can be used to replace all fully connected layers in a deep convolutional neural network. This novel Fastfood layer is also end-to-end trainable in conjunction with convolutional layers, allowing us to combine them into a new architecture, named deep fried convolutional networks, which substantially reduces the memory footprint of convolutional networks trained on MNIST and ImageNet with no drop in predictive performance.
The fully connected layers of a deep convolutional neural network typically contain over 90% of the network parameters, and consume the majority of the memory required to store the network parameters. Reducing the number of parameters while preserving essentially the same predictive performance is critically important for operating deep neural networks in memory constrained environments such as GPUs or embedded devices. In this paper we show how kernel methods, in particular a single Fastfood layer, can be used to replace all fully connected layers in a deep convolutional neural network. This novel Fastfood layer is also end-to-end trainable in conjunction with convolutional layers, allowing us to combine them into a new architecture, named deep fried convolutional networks, which substantially reduces the memory footprint of convolutional networks trained on MNIST and ImageNet with no drop in predictive performance.
The Bayesian Logic (BLOG) language was recently developed for defining first-order probability models over worlds with unknown numbers of objects. It handles important problems in AI, including data association and population estimation. This paper extends BLOG by adopting generative processes over function spaces — known as nonparametrics in the Bayesian literature. We introduce syntax for reasoning about arbitrary collections of objects, and their properties, in an intuitive manner. By exploiting exchangeability, distributions over unknown objects and their attributes are cast as Dirichlet processes, which resolve difficulties in model selection and inference caused by varying numbers of objects. We demonstrate these concepts with application to citation matching.
Lipreading is the task of decoding text from the movement of a speaker's mouth. Traditional approaches separated the problem into two stages: designing or learning visual features, and prediction. More recent deep lipreading approaches are end-to-end trainable (Wand et al., 2016; Chung & Zisserman, 2016a). However, existing work on models trained end-to-end perform only word classification, rather than sentence-level sequence prediction. Studies have shown that human lipreading performance increases for longer words (Easton & Basala, 1982), indicating the importance of features capturing temporal context in an ambiguous communication channel. Motivated by this observation, we present LipNet, a model that maps a variable-length sequence of video frames to text, making use of spatiotemporal convolutions, a recurrent network, and the connectionist temporal classification loss, trained entirely end-to-end. To the best of our knowledge, LipNet is the first end-to-end sentence-level lipreading model that simultaneously learns spatiotemporal visual features and a sequence model. On the GRID corpus, LipNet achieves 95.2% accuracy in sentence-level, overlapped speaker split task, outperforming experienced human lipreaders and the previous 86.4% word-level state-of-the-art accuracy (Gergen et al., 2016).
Semi-Markov decision processes are used to formulate many control problems and also play a key role in hierarchical reinforcement learning. In this chapter we show how to translate the decision making problem into a form that can instead be solved by inference and learning techniques. In particular, we will establish a formal connection between planning in semi-Markov decision processes and inference in probabilistic graphical models, then build on this connection to develop an expectation maximization (EM) algorithm for policy optimization in these models.
Reinforcement learning (RL) encompasses both online and offline regimes. Unlike its online counterpart, offline RL agents are trained using logged-data only, without interaction with the environment. Therefore, offline RL is a promising direction for real-world applications, such as healthcare, where repeated interaction with environments is prohibitive. However, since offline RL losses often involve evaluating state-action pairs not well-covered by training data, they can suffer due to the errors introduced when the function approximator attempts to extrapolate those pairs' value. These errors can be compounded by bootstrapping when the function approximator overestimates, leading the value function to *grow unbounded*, thereby crippling learning. In this paper, we introduce a three-part solution to combat extrapolation errors: (i) behavior value estimation, (ii) ranking regularization, and (iii) reparametrization of the value function. We provide ample empirical evidence on the effectiveness of our method, showing state of the art performance on the RL Unplugged (RLU) ATARI dataset. Furthermore, we introduce new datasets for bsuite as well as partially observable DeepMind Lab environments, on which our method outperforms state of the art offline RL algorithms.
We propose a novel attentional model for simultaneous object tracking and recognition that is driven by gaze data. Motivated by theories of the human perceptual system, the model consists of two interacting pathways: ventral and dorsal. The ventral pathway models object appearance and classification using deep (factored)-restricted Boltzmann machines. At each point in time, the observations consist of retinal images, with decaying resolution toward the periphery of the gaze. The dorsal pathway models the location, orientation, scale and speed of the attended object. The posterior distribution of these states is estimated with particle filtering. Deeper in the dorsal pathway, we encounter an attentional mechanism that learns to control gazes so as to minimize tracking uncertainty. The approach is modular (with each module easily replaceable with more sophisticated algorithms), straightforward to implement, practically efficient, and works well in simple video sequences.