Modern spectral synthesis codes need the thermally averaged free-free Gaunt factor defined over a very wide range of parameter space in order to produce an accurate prediction for the spectrum emitted by an ionized plasma. Until now no set of data exists that would meet this need in a fully satisfactory way. We have therefore undertaken to produce a table of very accurate non-relativistic Gaunt factors over a much wider range of parameters than has ever been produced before. We first produced a table of non-averaged Gaunt factors, covering the parameter space log10(epsilon_i) = -20 to +10 and log10(w) = -30 to +25. We then continued to produce a table of thermally averaged Gaunt factors covering the parameter space log10(gamma^2) = -6 to +10 and log10(u) = -16 to +13. Finally we produced a table of the frequency integrated Gaunt factor covering the parameter space log10(gamma^2) = -6 to +10. All the data presented in this paper are available online.
V4334 Sgr (a.k.a. Sakurai's object) is the central star of an old planetary nebula that underwent a very late thermal pulse a few years before its discovery in 1996. We have been monitoring the evolution of the optical emission line spectrum since 2001. The goal is to improve the evolutionary models by constraining them with the temporal evolution of the central star temperature. In addition the high resolution spectral observations obtained by X-shooter and ALMA show the temporal evolution of the different morphological components.
Aims.We present a comparison between independent computer codes, modeling the physics and chemistry of interstellar photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and chemical structure of the model clouds, and to converge the output of different codes to a common solution.
We announce the C23.01 update of Cloudy. This corrects a simple coding error, present since $\sim$ 1990, in one routine that required a conversion from the line-center to the mean normalization of the Ly$\alpha$ optical depth. This affects the destruction of H I Ly$\alpha$ by background opacities. Its largest effect is upon the Ly$\alpha$ intensity in high-ionization dusty clouds, where the predicted intensity is now up to three times stronger. Other properties that depend on Ly$\alpha$ destruction, such as grain infrared emission, change in response.
After becoming ionized, low-density astrophysical plasmas will begin a process of slow recombination. Models for this still have significant uncertainties. The recombination cannot normally be observed in isolation, because the ionization follows the evolutionary time scale of the ionizing source. Laboratory experiments are unable to reach the appropriate conditions because of the required very long time scales. The extended nebula around the very late helium flash (VLTP) star V4334 Sgr provides a unique laboratory for this kind of study. The sudden loss of the ionizing UV radiation after the VLTP event has allowed the nebula to recombine free from other influences. More than 290 long slit spectra taken with FORS1/2 at the ESO VLT between 2007 and 2022 are used to follow the time evolution of lines of H, He, N, S, O, Ar. Hydrogen and helium lines, representing most of the ionized mass, do not show significant changes. A small increase is seen in [N II] (+2.8 %/yr; significance 2.7 sigma), while we see a decrease in [O III] (-1.96 %/yr; 2.0 sigma). The [S II] lines show a change of +3.0 %/yr; 1.6 sigma). The lines of [S III] and of Ar III] show no significant change. For [S III], the measurement differs from the predicted decrease by 4.5 sigma. A possible explanation is that the fraction of [S IV] and higher is larger than expected. Such an effect could provide a potential solution for the sulfur anomaly in planetary nebulae.
MESS (Mass loss of Evolved StarS) is a Herschel Guaranteed Time Key Program that will image about 100, and do spectroscopy of about 50, post-main-sequence objects of all flavours: AGB stars, post-AGB stars, planetary nebulae, luminous blue variables, Wolf-Rayet stars, and supernova remnants. In this review the implementation and current status of MESS is outlined, and first results are presented.