Previous reports have revealed that down-regulation of miR-34a expression can promote colorectal cancer (CRC) cell growth by targeting cell cycle-related transcriptional factor E2F1. To date, the function of the single nucleotide polymorphism (SNP) located in the mature region of miR-34a has not been investigated.We performed a case-control study including 685 CRC patients and 618 cancer-free controls. Genotyping, real-time PCR assay, cell transfection, and the dual luciferase reporter assay were used in our study. Cell proliferation and cell cycle analysis were measured in CRC cells including Hct-116 and SW480. The overall survival of different genotypes was also investigated.We found that the rs35301225 polymorphism in miR-34a was involved in the occurrence of CRC by acting as a tumor suppressor by down-regulation of tumor-promoting gene E2F1. C/A SNP of miR-34a could promote CRC cell proliferation by up-regulation of E2F1. Also, C/A genotype can change the cell cycle by increasing the S phase percentage. Moreover, the SNP in rs35301225 of miR-34a was associated with tumor size and tumor differentiation, as well as metastasis in CRC patients; C/A SNP was related to the significantly enhanced expression of E2F1 and shorter survival in post-surgery CRC patients.rs35301225 in miR-34a was highly associated with a decreased risk of CRC in a Chinese population and might serve as a novel biomarker for colon cancer.
It has been proven a close relationship between intestinal microbiota and hypertension. Valsartan is a widely used ARB antihypertensive drug; so far, the effect of valsartan on intestinal microbiota remains largely unexplored. Herein, we evaluated the composition, structure and metabolites of intestinal microbiota of spontaneously hypertensive rats (SHRs) after valsartan administration. In the present study, valsartan administration decreased intestinal microbiota diversity, altered gut microbiota composition, leading to 192 unique OTUs deficiency ( vs WKY rats) and 10 unique OTUs deficiency ( vs SHRs) and did not prove impaired intestinal mucosal barriers. Valsartan decreased the production of isobutyric acid and isovaleric acid in SCFAs. Our findings revealed valsartan administration induced far-reaching and robust changes to the intestinal microbiota of SHRs and provided a better understanding of the relationship between efficacy of valsartan and gastrointestinal tract reaction.
Differentiation of adult bone marrow stem cells (BMSC) into hepatocyte-like cells is commonly performed by continuous exposure to a cytokines-cocktail. Here, it is shown that the differentiation efficacy in vitro can be considerably enhanced by sequential addition of liver-specific factors (fibroblast growth factor-4, hepatocyte growth factor, insulin-transferrin-sodium selenite, and dexamethasone) in a time-dependent order that closely resembles the secretion pattern during in vivo liver embryogenesis. Quantitative RT-PCR analysis and immunocytochemistry showed that, upon sequential exposure to liver-specific factors, different stages of hepatocyte differentiation, as seen during liver embryogenesis, can be mimicked. Indeed, expression of the early hepatocyte markers alpha-fetoprotein and hepatocyte nuclear factor (HNF)3beta decreased as differentiation progressed, whereas levels of the late liver-specific markers albumin (ALB), cytokeratin (CK)18, and HNF1alpha were gradually upregulated. In contrast, cocktail treatment did not significantly alter the expression pattern of the hepatic markers. Moreover, sequentially exposed cells featured highly differentiated hepatic functions, including ALB secretion, glycogen storage, urea production, and inducible cytochrome P450-dependent activity, far more efficiently compared to the cocktail condition. In conclusion, sequential induction of the differentiation process, analogous to in vivo liver development, is crucial for in vitro differentiation of adult rat BMSC into functional hepatocyte-like cells. This model may not only be applicable for in vitro studies of endoderm differentiation but it also provides a "virtually unlimited" source of functional hepatocytes, suitable for preclinical pharmacological research and testing, and cell and organ development.
Acute kidney injury is followed by regeneration of damaged renal tubular epithelial cells. The purpose of this study was to test the hypothesis that renal stem cells exist in the adult kidney and participate in the repair process. A unique population of cells that behave in a manner that is consistent with a renal stem cell were isolated from rat kidneys and were termed multipotent renal progenitor cells (MRPC). Features of these cells include spindle-shaped morphology; self-renewal for >200 population doublings without evidence for senescence; normal karyotype and DNA analysis; and expression of vimentin, CD90 (thy1.1), Pax-2, and Oct4 but not cytokeratin, MHC class I or II, or other markers of more differentiated cells. MRPC exhibit plasticity that is demonstrated by the ability of the cells to be induced to express endothelial, hepatocyte, and neural markers by reverse transcriptase–PCR and immunohistochemistry. The cells can differentiate into renal tubules when injected under the capsule of an uninjured kidney or intra-arterially after renal ischemia-reperfusion injury. Oct4 expression was seen in some tubular cells in the adult kidney, suggesting these cells may be candidate renal stem cells. It is proposed that MRPC participate in the regenerative response of the kidney to acute injury.
Background: Exploring the potential biological relationships between heart failure with preserved ejection fraction (HFpEF) and concomitant diseases has been the focus of many studies for the establishment of personalized therapies. Hypertension (HTN) is the most common concomitant disease in HFpEF patients, but the functional connections between HFpEF and HTN are still not fully understood and effective treatment strategies are still lacking. Methods: In this study, tandem mass tag (TMT) quantitative proteomics was used to identify disease-related proteins and construct disease-related networks. Furthermore, functional enrichment analysis of overlapping network modules was used to determine the functional similarities between HFpEF and HTN. Molecular docking and module analyses were combined to identify therapeutic targets for HFpEF and HTN. Results: Seven common differentially expressed proteins (co-DEPs) and eight overlapping modules were identified in HFpEF and HTN. The common biological processes between HFpEF and HTN were mainly related to energy metabolism. Myocardial contraction, energy metabolism, apoptosis, oxidative stress, immune response, and cardiac hypertrophy were all closely associated with HFpEF and HTN. Epinephrine, sulfadimethoxine, chloroform, and prednisolone acetate were best matched with the co-DEPs by molecular docking analyses. Conclusion: Myocardial contraction, energy metabolism, apoptosis, oxidative stress, immune response, and cardiac hypertrophy were the main functional connections between HFpEF and HTN. Epinephrine, sulfadimethoxine, chloroform, and prednisolone acetate could potentially be effective for the treatment of HTN and HFpEF.