This study evaluated a combined method for the detection of Listeria monocytogenes in mushrooms, involving enrichment and quantitative real-time polymerase chain reaction (qPCR), to improve sensitivity and reduce detection time. The growth of L. monocytogenes was evaluated in Listeria enrichment broth (LEB) with modified carbon and nitrogen sources, increasing sodium concentrations, and added micronutrients. Primers targeting the L. monocytogenes iap (iap1 and iap2), hlyA (hlyA1-hlyA6), and prfA (prfA1-prfA4) genes were developed and their sensitivity and specificity were evaluated. The greatest increase in L. monocytogenes cell count was observed after 6-h incubation at 30°C in LEB+2 × FAC (LEB plus 20 mL/L ferric ammonium citrate), where cell count increased by 1.4 log CFU (colony-forming unit)/mL, compared with 0.9 log CFU/mL in LEB (p < 0.05). iap2 primers targeting the iap gene showed high specificity and were the most sensitive among those tested, with a detection limit of 2 log CFU/mL in LEB medium, 3.1 log CFU/g in golden needle mushroom, and 3.5 log CFU/g in large oyster mushroom. When applied to detection in golden needle mushrooms, a combination of 3-h incubation in LEB+2 × FAC medium and qPCR analysis with iap2 primers permitted detection of L. monocytogenes, even at an inoculum of 1 log CFU/g. Similarly, in large oyster mushrooms, 10-h enrichment in LEB+2 × FAC medium resulted in a cell count of 3.7 log CFU/g. These results indicate that a combined detection method, using LEB+2 × FAC medium for enrichment followed by qPCR with iap2 primer pair, can reduce enrichment time and improve the sensitivity and specificity of L. monocytogenes detection in mushrooms.
Abstract This study isolated Salmonella from cucumbers, analyzed the antibiotic resistance and acid resistance for the isolates and developed a dynamic model. Salmonella prevalence in cucumbers and their resistances were determined. To describe the kinetic behavior of Salmonella isolates, the isolates were inoculated into cucumbers, and Salmonella cell counts were enumerated during storage at 10–30°C. The Baranyi model was fitted to the cell count data to calculate kinetic parameters (lag phase duration [ LPD ] and maximum specific growth rate ( μ max )], and a polynomial model was fitted to the kinetic parameters as a function of temperature. The model performance was evaluated with root mean square error ( RMSE ). Using these models, a dynamic model was developed. Salmonella were detected in 3 of 24 cucumbers, all of which were multidrug‐resistant and one was acid‐resistant. As storage temperature increased, LPD decreased and μ max increased. These models were appropriate with 0.367 of RMSE . These results suggest that cross‐contaminated Salmonella could increase during transportation, and it may lead to human infection.
The annual consumption of fishery products, particularly sea squirt (Halocynthia roretzi), per person has steadily increased in South Korea. However, the quantitative risk of Vibrio parahaemolyticus following intake of sea squirt has not been analyzed. This study focuses on quantitative predictions of the probability of consuming sea squirt and getting of V. parahaemolyticus foodborne illness. The prevalence of V. parahaemolyticus in sea squirt was evaluated, and the time spent by sea squirt in transportation vehicles, market displays, and home refrigerators, in addition to the temperature of each of these, were recorded. The data were fitted to the @RISK program to obtain a probability distribution. Predictive models were developed to determine the fate of V. parahaemolyticus under distribution conditions. A simulation model was prepared based on experimental data, and a dose-response model for V. parahaemolyticus was prepared using data from literature to estimate infection risk. V. parahaemolyticus contamination was detected in 6 of 35 (17.1%) sea squirt samples. The daily consumption quantity of sea squirt was 62.14 g per person, and the consumption frequency was 0.28%. The average probability of V. parahaemolyticus foodborne illness following sea squirt consumption per person per day was 4.03 × 10−9. The objective of this study was to evaluate the risk of foodborne illness caused by Vibrio parahaemolyticus following sea squirt consumption in South Korea.
Pigs are considered the most likely source of organs for xenotransplantation due to their anatomical and physiological similarities to humans. Production of transgenic pigs including addition of human complement-regulatory protein genes and deletion of alpha-1,3-galactosyl transferase gene may overcome hyperacute rejection (HAR), the first and currently the most critical immunological hurdle in the development of xenogeneic organs for human transplantation. However, even after resolving HAR in pig-to-human xenotransplantation, a series of other transgenic pigs may be required to alleviate subsequent acute and chronic rejection and incompatibility of porcine proteins to human counterparts. The production of transgenic pigs is not only labor-intensive, time-consuming, and costly, but also the usefulness of such pigs in transplantation to humans is unpredictable. For these reasons, development of a reliable in vitro procedure to pre-evaluate effectiveness of the transgenic approach would be beneficial. This study was preformed to establish an in vitro model of xenotransplantation using porcine embryonic germ (EG) cells, undifferentiated stem cells derived from culture of primordial germ cells. Porcine EG cells were maintained in feeder-free state in DMEM containing 15% (v/v) fetal bovine serum and 1000 units/mL leukemia inhibitory factor. Human complement down-regulator hCD46 (also known as MCP, membrane cofactor protein) gene under the regulation of cytomegalovirus promoter was introduced into porcine EG cells. Transfected cells were selected by antibiotic treatment and confirmed by PCR. To test the resistance of hCD46-transgenic EG cells to human xenoreactive natural antibody and complement, EG cells were cultured for 1.5 days in DMEM containing 15% (v/v) normal human serum. The treatment with human serum did not affect the survival of hCD46-transgenic EG cells, whereas with the same treatment approximately one half of non-transfected EG cells failed to survive (P < 0.01). Transgenic EG cells presumably capable of overcoming HAR were used as nuclear donors for subsequent transfer of nuclei into enucleated oocytes. Among 110 reconstituted oocytes, 19 (17.3%) developed to the blastocyst stage. Analysis of individual nuclear transfer embryos by PCR indicated that 89.5% (17/19) of embryos contained transgene hCD46. The PCR-negative embryos might be due to an incomplete antibiotic selection of cells after transfection. Overall, the results of the present study demonstrate that the cell culture-based model of xenotransplantation may validate the usefulness of particular transgenic pigs prior to actual production. Further experiments on differentiation of transgenic EG cells into various cell types, cytolytic analysis of such cells to assess efficiency of xenotransplantation, and subsequent production and transfer of transgenic clone embryos to recipients may provide a useful new procedure to accelerate xenotransplantation research.
Abstract Background Campylobacter jejuni is a major gastroenteritis-causing foodborne pathogen. However, it is difficult to isolate when competing bacteria or cold-damaged cells are present. Objective Herein, a medium (Campylobacter selective agar, CSA) was developed and supplemented with catalase, L-serine, L-cysteine, and quercetin for the selective detection of C. jejuni in food. Method The C. jejuni-detection efficiency in media broth and chicken tenders was evaluated. The pathogen was enumerated on modified charcoal–cefoperazone–deoxycholate agar (mCCDA), CSA supplemented with 4 µM catalase (CSA-C4), 8 µM catalase (CSA-C8), 20 mM L-serine (CSA-S20) or 50 mM L-serine (CSA-S50), and mCCDA supplemented with 0.5 mM L-cysteine (mCCDA-LC0.5), 1 mM L-cysteine (mCCDA-LC1), 40 µM quercetin (mCCDA-Q40) or 320 µM quercetin (mCCDA-Q320). The detection efficiency was then evaluated by counting colonies on the selective agar media. Quantitative assessment was also performed using chicken and duck carcasses. Results The C. jejuni detection efficiencies were higher (P < 0.05) in the groups CSA-C4 or CSA-C8, and CSA-S20 or CSA-S50, than mCCDA, and the detection efficiencies were maintained even in the presence of Acinetobacter baumannii, a competing bacterium. In the quantitative test, CSA-C8 and CSA-S50 demonstrated higher C. jejuni-detection efficiencies than mCCDA (control). Conclusions Therefore, CSA-C8 and CSA-S50 improved the detection efficiency of C. jejuni in poultry products by promoting the recovery of cold-damaged cells. Highlights When using CSA-C8 or CSA-S50 developed in this study for detection of C. jejuni in food, detection efficiency was higher than mCCDA.
This study examined the α-glucosidase inhibitory, and apoptosis- and anti-muscular-related factors of goat meat extracts from forelegs, hind legs, loin, and ribs. The goat meat extracts were evaluated for their α-glucosidase inhibitory activity. The gene and protein expression levels of Bcl-2-associated X (bax), p53, and p21 were examined by reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting in AGS and HT-29 cells. The expression levels of Atrogin-1 and MHC1b were examined by RT-PCR in C2C12 myoblasts, and the expression levels of Atrogin-1, muscle atrophy F-box (MAFbx), muscle RING-finger protein-1 (MuRF-1), and myosin heavy chain-7 were investigated by immunoblotting. α-Glucosidase inhibitory activity was higher in ethanol extract than in hydrous and hot water extracts. BAX and p53 expression levels were higher (p<0.05) in AGS cells treated with goat meat extract than those of cells treated with no goat meat extract. In HT-29 cells, the protein expression levels of BAX, p53, and p21 were higher (p<0.05) in the cells treated with goat meat extract than those of cells not treated with goat meat extract. In dexamethasone-treated C2C12 cells, goat meat extract treatment lower (p<0.05) the expression of Atrogin-1 and lower (p<0.05) the expression of MAFbx and MuRF-1. The results of the present study indicate that goat meat extracts have α-glucosidase inhibitory activity in vitro. In addition, apoptosis was induced in AGS cells and HT-29 cells treated with goat meat extract, and anti-muscular atrophy activity was also observed in C2C12 cells treated with goat meat extract.