1. Humans may visually track a moving object either when they are stationary or in motion. To investigate visual-vestibular interaction during both conditions, we compared horizontal smooth pursuit (SP) and active combined eye-head tracking (CEHT) of a target moving sinusoidally at 0.4 Hz in four normal subjects while the subjects were either stationary or vibrated in yaw at 2.8 Hz. We also measured the visually enhanced vestibuloocular reflex (VVOR) during vibration in yaw at 2.8 Hz over a peak head velocity range of 5–40 degrees/s. 2. We found that the gain of the VVOR at 2.8 Hz increased in all four subjects as peak head velocity increased (P < 0.001), with minimal phase changes, such that mean retinal image slip was held below 5 degrees/s. However, no corresponding modulation in vestibuloocular reflex gain occurred with increasing peak head velocity during a control condition when subjects were rotated in darkness. 3. During both horizontal SP and CEHT, tracking gains were similar, and the mean slip speed of the target's image on the retina was held below 5.5 degrees/s whether subjects were stationary or being vibrated at 2.8 Hz. During both horizontal SP and CEHT of target motion at 0.4 Hz, while subjects were vibrated in yaw, VVOR gain for the 2.8-Hz head rotations was similar to or higher than that achieved during fixation of a stationary target. This is in contrast to the decrease of VVOR gain that is reported while stationary subjects perform CEHT.(ABSTRACT TRUNCATED AT 250 WORDS)
1. The stability of gaze was measured in nine normal subjects during 30-s epochs of standing, walking in place, and running in place. The angle of gaze and head rotations in horizontal and vertical planes were measured using the magnetic search coil technique. Subjects visually fixed on a stationary object located at a distance of 100 m; thus measurements of gaze indicated the stability of images on the retina. 2. During standing, walking, or running in place, the standard deviation of the angle of gaze was less than 0.4 degrees, both horizontally and vertically. During standing and walking in place, peak gaze velocity (Gp) was less than 3.0 degrees/s. During running in place, Gp was less than 3.0 degrees/s horizontally but ranged up to 9.3 degrees/s vertically. 3. Visual acuity was measured during standing, walking, and running in place. During walking in place, five of nine subjects showed a small but significant (P = 0.03) decline in visual acuity compared with standing. During running in place, all nine subjects showed a small but significant (P = 0.002) decline in visual acuity compared with standing. 4. Stability of gaze was also measured during vigorous, voluntary head rotations in the horizontal (yaw) or vertical (pitch) planes, for 15-s epochs. Gp ranged as high as 70 degrees/s horizontally and 41 degrees/s vertically. All subjects reported illusory movement of the seen environment during these head rotations. 5. The suitability of linear systems techniques for analysis of the horizontal and vertical vestibuloocular reflex (VOR) during walking and running in place was assessed using coherence spectral analysis.(ABSTRACT TRUNCATED AT 250 WORDS)