Cells secrete numerous bioactive molecules essential for the function of healthy organisms. However, there are no scalable methods to link individual cell secretions to their transcriptional state. By developing and using secretion encoded single-cell sequencing (SEC-seq), which exploits hydrogel nanovials to capture individual cells and their secretions, we simultaneously measured the secretion of vascular endothelial growth factor A (VEGF-A) and the transcriptome for thousands of individual mesenchymal stromal cells (MSCs). We found that VEGF-A secretion is heterogeneous across the cell population and lowly correlated with the
Human immunodeficiency virus (HIV) is an attractive target for chimeric antigen receptor (CAR) therapy. CAR T cells have proved remarkably potent in targeted killing of cancer cells, and we surmised that CAR T cells could prove useful in eradicating HIV-infected cells. Toward this goal, we interrogate several neutralizing single-chain variable fragments (scFvs) that target different regions of the HIV envelope glycoprotein, gp120. We find here that CAR T cells with scFv from NIH45-46 antibody demonstrated the highest cytotoxicity. Although NIH45-46 CAR T cells are capable of eliminating antigen-expressing cells, we wanted to address HIV reactivation from ex vivo culture of HIV patient-derived CAR T cells. In order to capitalize on the HIV reactivation, we developed a conditionally replicating lentiviral vector (crLV). The crLV can hijack HIV machinery, forming a chimeric lentivirus (LV) instead of HIV and delivered to uninfected cells. We find that CAR T cells generated with crLVs have similar CAR-mediated functionality as traditional CARs. We also demonstrate crLVs' capability of expanding CAR percentage and protecting CD4 CAR T cell in HIV donors. Collectively, we demonstrate here that the novel crLV NIH45-46 CAR can serve as a strategy to combat HIV, as well as overcome HIV reactivation in CD4+ CAR T cells. Human immunodeficiency virus (HIV) is an attractive target for chimeric antigen receptor (CAR) therapy. CAR T cells have proved remarkably potent in targeted killing of cancer cells, and we surmised that CAR T cells could prove useful in eradicating HIV-infected cells. Toward this goal, we interrogate several neutralizing single-chain variable fragments (scFvs) that target different regions of the HIV envelope glycoprotein, gp120. We find here that CAR T cells with scFv from NIH45-46 antibody demonstrated the highest cytotoxicity. Although NIH45-46 CAR T cells are capable of eliminating antigen-expressing cells, we wanted to address HIV reactivation from ex vivo culture of HIV patient-derived CAR T cells. In order to capitalize on the HIV reactivation, we developed a conditionally replicating lentiviral vector (crLV). The crLV can hijack HIV machinery, forming a chimeric lentivirus (LV) instead of HIV and delivered to uninfected cells. We find that CAR T cells generated with crLVs have similar CAR-mediated functionality as traditional CARs. We also demonstrate crLVs' capability of expanding CAR percentage and protecting CD4 CAR T cell in HIV donors. Collectively, we demonstrate here that the novel crLV NIH45-46 CAR can serve as a strategy to combat HIV, as well as overcome HIV reactivation in CD4+ CAR T cells.
Human immunodeficiency virus type 1 (HIV-1) causes a persistent viral infection resulting in the demise of immune regulatory cells. Clearance of HIV-1 infection results in integration of proviral DNA into the genome of host cells, which provides a means for evasion and long-term persistence. A therapeutic compound that specifically targets and sustainably activates a latent HIV-1 provirus could be transformative and is the goal for the "shock-and-kill" approach to a functional cure for HIV-1. Substantial progress has been made toward the development of recombinant proteins that target specific genomic loci for gene activation, repression, or inactivation by directed mutations. However, most of these modalities are too large or too complex for efficient therapeutic application. We describe here the development and testing of a novel recombinant zinc finger protein transactivator, ZFP-362-VPR, which specifically and potently enhances proviral HIV-1 transcription both in established latency models and activity across different viral clades. Additionally, ZFP-362-VPR-activated HIV-1 reporter gene expression in a well-established primary human CD4+ T cell latency model and off-target pathways were determined by transcriptome analyses. This study provides clear proof of concept for the application of a novel, therapeutically relevant, protein transactivator to purge cellular reservoirs of HIV-1.
The RNA-guided, modified type II prokaryotic CRISPR with CRISPR-associated proteins (CRISPR/Cas9) system represents a simple gene-editing platform with applications in biotechnology and also potentially as a therapeutic modality. The system requires a small guide RNA (sgRNA) and a catalytic Cas9 protein to induce non-homologous end joining (NHEJ) at break sites, resulting in the formation of inactivating mutations, or through homology-directed repair (HDR) can engineer in specific sequence changes. Although CRISPR/Cas9 is a powerful technology, the effects can be limited as a result of nuclease-mediated degradation of the RNA components. Significant research has focused on the solid-phase synthesis of CRISPR RNA components with chemically modified bases, but this approach is technically challenging and expensive. Development of a simple, generic approach to generate chemically modified CRISPR RNAs may broaden applications that require nuclease-resistant CRISPR components. We report here the development of a novel, functional U-replaced trans-activating RNA (tracrRNA) that can be in vitro transcribed with chemically stabilizing 2′-fluoro (2′F)-pyrimidines. These data represent a unique and facile approach to generating chemically stabilized CRISPR RNA. The RNA-guided, modified type II prokaryotic CRISPR with CRISPR-associated proteins (CRISPR/Cas9) system represents a simple gene-editing platform with applications in biotechnology and also potentially as a therapeutic modality. The system requires a small guide RNA (sgRNA) and a catalytic Cas9 protein to induce non-homologous end joining (NHEJ) at break sites, resulting in the formation of inactivating mutations, or through homology-directed repair (HDR) can engineer in specific sequence changes. Although CRISPR/Cas9 is a powerful technology, the effects can be limited as a result of nuclease-mediated degradation of the RNA components. Significant research has focused on the solid-phase synthesis of CRISPR RNA components with chemically modified bases, but this approach is technically challenging and expensive. Development of a simple, generic approach to generate chemically modified CRISPR RNAs may broaden applications that require nuclease-resistant CRISPR components. We report here the development of a novel, functional U-replaced trans-activating RNA (tracrRNA) that can be in vitro transcribed with chemically stabilizing 2′-fluoro (2′F)-pyrimidines. These data represent a unique and facile approach to generating chemically stabilized CRISPR RNA.
Abstract CRISPR/Cas is a transformative gene editing tool, that offers a simple and effective way to target a catalytic Cas9, the most widely used is derived from Streptococcus pyogenes (Sp Cas9), with a complementary small guide RNA (sgRNA) to inactivate endogenous genes resulting from insertions and deletions (indels). CRISPR/Cas9 has been rapidly applied to basic research as well as expanded for potential clinical applications. Utilization of sp Cas9 as an ribonuclearprotein complex (RNP) is considered the most safe and effective method to apply Cas9 technology, and the efficacy of this system is critically dependent on the ability of Cas9 to generate high levels of indels. We find here that novel sequence changes to the tracrRNA significantly improves Cas9 activity when delivered as an RNP. We demonstrate that a dual-guide RNA (dgRNA) with a modified tracrRNA can improve reporter knockdown and indel formation at several targets within the long terminal repeat (LTR) of HIV. Furthermore, the sequence-modified tracrRNAs improved Cas9-mediated reduction of CCR5 surface receptor expression in cell lines, which correlated with higher levels of indel formation. It was demonstrated that a Cas9 RNP with a sequence modified tracrRNA enhanced indel formation at the CCR5 target site in primary CD4+ T-cells. Finally, we show improved activity at two additional targets within the HBB locus and the BCL11A GATA site. Overall, the data presented here suggests that novel facile tracrRNA sequence changes could potentially be integrated with current dgRNA technology, and open up the possibility for the development of sequence modified tracrRNAs to improve Cas9 RNP activity.
Abstract Background Human Immunodeficiency Virus type 1 (HIV-1) is a lentivirus that causes a persistent viral infection and results in the demise of immune regulatory cells. Clearance of HIV-1 infection by the immune system is inefficient, and integration of proviral DNA into the genome of host cells provides a means for evasion and long-term persistence. A therapeutic compound that specifically targets and sustainably activates a latent HIV provirus could be transformative and is an overarching goal for the “shock-and-kill” approach to a functional cure for HIV. Results Substantial progress has been made towards the development of recombinant proteins that can target specific genomic loci for gene activation, repression or inactivation by directed mutations. However, most of these modalities are too large, or too complex, for efficient therapeutic application. We describe here the development and testing of a novel recombinant zinc finger protein transactivator, ZFPb-362-VPR, which specifically and potently enhances proviral HIV transcription both in established latency models and across different viral clades. Additionally, ZFP-362-VPR activated HIV reporter gene expression in a well-established primary human CD4 + T-cell latency model and was specific in targeting the HIV LTR as determined from off-target transcriptome analyses. Conclusions: This study provides clear proof of concept for the application of a novel, and therapeutically relevant, protein transactivator to purge cellular reservoirs of HIV-1.
SARS-CoV-2 (CoV-2) viral infection results in COVID-19 disease, which has caused significant morbidity and mortality worldwide. A vaccine is crucial to curtail the spread of SARS-CoV-2, while therapeutics will be required to treat ongoing and reemerging infections of SARS-CoV-2 and COVID-19 disease. There are currently no commercially available effective anti-viral therapies for COVID-19, urging the development of novel modalities. Here, we describe a molecular therapy specifically targeted to neutralize SARS-CoV-2, which consists of extracellular vesicles (EVs) containing a novel fusion tetraspanin protein, CD63, embedded within an anti-CoV-2 nanobody. These anti-CoV-2-enriched EVs bind SARS-CoV-2 spike protein at the receptor-binding domain (RBD) site and can functionally neutralize SARS-CoV-2. This work demonstrates an innovative EV-targeting platform that can be employed to target and inhibit the early stages of SARS-CoV-2 infection.