ABSTRACT DNA methylation has evolved to silence mutagenic transposable elements (TEs) while typically avoiding the targeting of endogenous genes. Mechanisms that prevent DNA methyltransferases from ectopically methylating genes are expected to be of prime importance during periods of dynamic cell cycle activities including plant embryogenesis. However, virtually nothing is known regarding how DNA methyltransferase activities are precisely regulated during embryogenesis to prevent the induction of potentially deleterious and mitotically stable genic epimutations. Here, we report that microRNA-mediated repression of CHROMOMETHYLASE 3 (CMT3) and the chromatin features that CMT3 prefers help prevent ectopic methylation of thousands of genes during embryogenesis that can persist for weeks afterwards. Moreover, CMT3-induced ectopic methylation of genes undergoing transcriptional activation can reduce their corresponding transcript levels. Therefore, the repression of CMT3 prevents epigenetic collateral damage on endogenous genes. We also provide a model that may help reconcile conflicting viewpoints regarding the functions of gene-body methylation that occurs in nearly all flowering plants.
Biosynthetic gene clusters (BGCs) are sets of often heterologous genes that are genetically and functionally linked. Among eukaryotes, BGCs are most common in plants and fungi and ensure the coexpression of the different enzymes coordinating the biosynthesis of specialized metabolites. Here, we report the identification of a withanolide BGC in Physalis grisea (ground-cherry), a member of the nightshade family (Solanaceae). A combination of transcriptomic, epigenomic, and metabolic analyses revealed that, following a duplication event, this BGC evolved two tissue-specifically expressed subclusters, containing several pairs of paralogs that contribute to related but distinct biochemical processes; this subfunctionalization is tightly associated with epigenetic features and the local chromatin environment. The two subclusters appear strictly isolated from each other at the structural chromatin level, each forming a highly self-interacting chromatin domain with tissue-dependent levels of condensation. This correlates with gene expression in either above- or below-ground tissue, thus spatially separating the production of different withanolide compounds. By comparative phylogenomics, we show that the withanolide BGC most likely evolved before the diversification of the Solanaceae family and underwent lineage-specific diversifications and losses. The tissue-specific subfunctionalization is common to species of the Physalideae tribe but distinct from other, independent duplication events outside of this clade. In sum, our study reports on an instance of an epigenetically modulated subfunctionalization within a BGC and sheds light on the biosynthesis of withanolides, a highly diverse group of steroidal triterpenoids important in plant defense and amenable to pharmaceutical applications due to their anti-inflammatory, antibiotic, and anticancer properties.
Abstract MicroRNAs (miRNAs) are produced from double-stranded precursors, from which a short duplex is excised. The strand of the duplex that remains more abundant is usually the active form, the miRNA, while steady-state levels of the other strand, the miRNA*, are generally lower. The executive engines of miRNA-directed gene silencing are RNA-induced silencing complexes (RISCs). During RISC maturation, the miRNA/miRNA* duplex associates with the catalytic subunit, an ARGONAUTE (AGO) protein. Subsequently, the guide strand, which directs gene silencing, is retained, while the passenger strand is degraded. Under certain circumstances, the miRNA*s can be retained as guide strands. miR170 and miR171 are prototypical miRNAs in Arabidopsis (Arabidopsis thaliana) with well-defined targets. We found that the corresponding star molecules, the sequence-identical miR170* and miR171a*, have several features of active miRNAs, such as sequence conservation and AGO1 association. We confirmed that active AGO1-miR171a* complexes are common in Arabidopsis and that they trigger silencing of SU(VAR)3-9 HOMOLOG8, a new miR171a* target that was acquired very recently in the Arabidopsis lineage. Our study demonstrates that each miR171a strand can be loaded onto RISC with separate regulatory outcomes.
To secure their access to water, light, and nutrients, many plant species have developed allelopathic strategies to suppress competitors. To this end, they release into the rhizosphere phytotoxic substances that inhibit the germination and growth of neighbors. Despite the importance of allelopathy in shaping natural plant communities and for agricultural production, the underlying molecular mechanisms are largely unknown. Here, we report that allelochemicals derived from the common class of cyclic hydroxamic acid root exudates directly affect the chromatin-modifying machinery in Arabidopsis thaliana. These allelochemicals inhibit histone deacetylases both in vitro and in vivo and exert their activity through locus-specific alterations of histone acetylation and associated gene expression. Our multilevel analysis collectively shows how plant-plant interactions interfere with a fundamental cellular process, histone acetylation, by targeting an evolutionarily highly conserved class of enzymes.
There has been much excitement about the possibility that exposure to specific environments can induce an ecological memory in the form of whole-sale, genome-wide epigenetic changes that are maintained over many generations. In the model plant Arabidopsis thaliana, numerous heritable DNA methylation differences have been identified in greenhouse-grown isogenic lines, but it remains unknown how natural, highly variable environments affect the rate and spectrum of such changes. Here we present detailed methylome analyses in a geographically dispersed A. thaliana population that constitutes a collection of near-isogenic lines, diverged for at least a century from a common ancestor. Methylome variation largely reflected genetic distance, and was in many aspects similar to that of lines raised in uniform conditions. Thus, even when plants are grown in varying and diverse natural sites, genome-wide epigenetic variation accumulates mostly in a clock-like manner, and epigenetic divergence thus parallels the pattern of genome-wide DNA sequence divergence.
Summary Plant‐specific EFFECTORS OF TRANSCRIPTION ( ET ) are characterised by a variable number of highly conserved ET repeats, which are involved in zinc and DNA binding. In addition, ET s share a GIY ‐ YIG domain, involved in DNA nicking activity. It was hypothesised that ET s might act as epigenetic regulators. Here, methylome, transcriptome and phenotypic analyses were performed to investigate the role of ET factors and their involvement in DNA methylation in Arabidopsis thaliana . Comparative DNA methylation and transcriptome analyses in flowers and seedlings of et mutants revealed ET ‐specific differentially expressed genes and mostly independently characteristic, ET ‐specific differentially methylated regions. Loss of ET function results in pleiotropic developmental defects. The accumulation of cyclobutane pyrimidine dimers after ultraviolet stress in et mutants suggests an ET function in DNA repair.
Transgenerationally heritable epialleles are defined by the stable propagation of alternative transcriptional states through mitotic and meiotic cell cycles. Given that the propagation of DNA methylation at CpG sites, mediated in Arabidopsis by MET1, plays a central role in epigenetic inheritance, we examined genomewide DNA methylation in partial and complete loss-of-function met1 mutants. We interpreted the data in relation to transgenerational epiallelic stability, which allowed us to classify chromosomal targets of epigenetic regulation into (i) single copy and methylated exclusively at CpGs, readily forming epialleles, and (ii) transposon-derived, methylated at all cytosines, which may or may not form epialleles. We provide evidence that DNA sequence features such as density of CpGs and genomic repetitiveness of the loci predispose their susceptibility to epiallelic switching. The importance and predictive power of these genetic features were confirmed by analyses of common epialleles in natural Arabidopsis accessions, epigenetic recombinant inbred lines (epiRILs) and also verified in rice.
Whole-genome bisulfite sequencing (WGBS) is the standard method for profiling DNA methylation at single-nucleotide resolution. Different tools have been developed to extract differentially methylated regions (DMRs), often built upon assumptions from mammalian data. Here, we present MethylScore, a pipeline to analyse WGBS data and to account for the substantially more complex and variable nature of plant DNA methylation. MethylScore uses an unsupervised machine learning approach to segment the genome by classification into states of high and low methylation. It processes data from genomic alignments to DMR output and is designed to be usable by novice and expert users alike. We show how MethylScore can identify DMRs from hundreds of samples and how its data-driven approach can stratify associated samples without prior information. We identify DMRs in the A. thaliana 1,001 Genomes dataset to unveil known and unknown genotype–epigenotype associations .