Abstract The efficacy of exogenous carbohydrases in pig diets has been suggested to depend on enzyme activity and dietary fiber composition, but recent evidence suggests other factors such as ambient temperature might be important as well. Therefore, we investigated the effect of heat stress (HS) on the efficacy of a multienzyme carbohydrase blend in growing pigs. Ninety-six (barrows: gilts; 1:1) growing pigs with initial body weight (BW) of 20.15 ± 0.18 kg were randomly assigned to six treatments, with eight replicates of two pigs per pen in a 3 × 2 factorial arrangement: three levels of carbohydrase (0, 1X, or 2X) at two environmental temperatures (20 °C or cyclical 28 °C nighttime and 35 °C day time). The 1X dose (50 g/tonne) provided 1,250 viscosimetry unit (visco-units) endo-β-1,4-xylanase, 4,600 units α-l-arabinofuranosidase and 860 visco-units endo-1,3(4)-β-glucanase per kilogram of feed. Pigs were fed ad libitum for 28 d and 1 pig per pen was sacrificed on day 28. There was no enzyme × temperature interaction on any response criteria; thus, only main effects are reported. Enzyme treatment quadratically increased (P < 0.05) BW on day 28, average daily gain (ADG) (P < 0.05), and average daily feed intake (ADFI) (P < 0.05) with the 1X level being highest. HS reduced the BW at day 14 (P < 0.01) and day 28 (P < 0.01), ADG (P < 0.01), and ADFI (P<0.001). There was a trend of increased feed efficiency (G:F) (P < 0.1) in the HS pigs. HS increased apparent jejunal digestibility of energy (P < 0.05) and apparent ileal digestibility of calcium (P < 0.01). At day 1, HS reduced serum glucose (P < 0.001) but increased nonesterified fatty acid (P < 0.01). In the jejunum, there was a trend of increased villi height by carbohydrases (P < 0.1), whereas HS reduced villi height (P < 0.05). HS increased the jejunal mRNA abundance of IL1β in the jejunum (P < 0.001). There was a trend for a reduction in ileal MUC2 (P < 0.1) and occludin (P < 0.1) by HS, and a trend for increased PEPT1 (P < 0.1). There was no effect of HS on alpha diversity and beta diversity of the fecal microbiome, but there was an increase in the abundance of pathogenic bacteria in the HS group. In conclusion, HS did not alter the efficacy of carbohydrases. This suggests that carbohydrases and HS modulate pig performance independently.
Water clarity is often the primary guiding factor in determining whether a prefiltration step is needed to increase volumes processed for a range of microbial endpoints. In this study, we evaluate the effect of filter pore size on the bacterial communities detected by 16S rRNA gene sequencing and incidence of two host-specific microbial source tracking (MST) markers in a range of coastal waters from southern Lake Michigan, using two independent data sets collected in 2015 (bacterial communities) and 2016–2017 (MST markers). Water samples were collected from river, shoreline, and offshore areas. For bacterial communities, each sample was filtered through a 5.0-μm filter, followed by filtration through a 0.22-μm filter, resulting in 70 and 143 filter pairs for bacterial communities and MST markers, respectively. Following DNA extraction, the bacterial communities were compared using 16S rRNA gene amplicons of the V3–V4 region sequenced on a MiSeq Illumina platform. Presence of human ( Bacteroides HF183) and gull (Gull2, Catellicoccus marimammalium ) host-specific MST markers were detected by qPCR. Actinobacteriota, Bacteroidota, and Proteobacteria, collectively represented 96.9% and 93.9% of the relative proportion of all phyla in the 0.22- and 5.0-μm pore size filters, respectively. There were more families detected in the 5.0-μm pore size filter (368) than the 0.22-μm (228). There were significant differences in the number of taxa between the two filter sizes at all levels of taxonomic classification according to linear discriminant analysis (LDA) effect size (LEfSe) with as many as 986 taxa from both filter sizes at LDA effect sizes greater than 2.0. Overall, the Gull2 marker was found in higher abundance on the 5.0-μm filter than 0.22 μm with the reverse pattern for the HF183 marker. This discrepancy could lead to problems with identifying microbial sources of contamination. Collectively, these results highlight the importance of analyzing pre- and final filters for a wide range of microbial endpoints, including host-specific MST markers routinely used in water quality monitoring programs. Analysis of both filters may increase costs but provides more complete genomic data via increased sample volume for characterizing microbial communities in coastal waters.
Crohn's Disease and Ulcerative Colitis are chronic, inflammatory conditions of the digestive tract, collectively known as Inflammatory Bowel Disease (IBD). The combined influence of lifestyle factors, genetics, and the gut microbiome contribute to IBD pathogenesis. Studies of the gut microbiome have shown significant differences in its composition between healthy individuals and those with IBD. Due to the high inter-individual microbiome variation seen in humans, mouse models of IBD are often used to investigate potential IBD mechanisms and their interplay between host, microbial, and environmental factors. While fecal samples are the predominant material used for microbial community analysis, they may not be the ideal sample to use for analysis of the microbiome of mice with experimental colitis, such as that induced by 2, 4, 6 trinitrobenzesulfonic acid (TNBS). As TNBS is administered intrarectally to induce colitis and inflammation is confined to the colon in this model, we hypothesized that the microbiome of the colonic mucus would most closely correlate with TNBS colitis severity. Based on our previous research, we also hypothesized that sex would be associated with both disease severity and microbial differences in mice with chronic TNBS colitis. We examined and compared the fecal, cecal content, and colonic mucus microbiota of 8-week old male and female C57BL/6J wild-type mice prior to and after the induction of TNBS colitis via 16S rRNA gene sequencing. We found that the colonic mucus microbiome was more closely correlated with disease severity than were alterations in the fecal and cecal microbiomes. We also found that the microbiomes of the feces, cecum, and mucus were distinct, but found no significant differences that were associated with sex in either compartment. Our findings highlight the importance of sampling colonic mucus in TNBS-induced colitis. Moreover, consideration of the differential impact of sex on the microbiome across mouse strains may be critical for the appropriate application of TNBS colitis models and robust comparisons across studies in the future.
Inflammatory bowel disease (IBD) is associated with prolonged, excess secretions of Tumor Necrosis Factor (TNF). Many patients with IBD have successful management of IBD symptoms by blocking TNF secretion or signaling. However, some patients are non-responsive to this therapy, eventually become refractory to therapy, or Alterations in the microbiota that are associated with the lack of TNF could be a contributing cause of this therapeutic insufficiency seen in some patients. Here we use wildtype (WT) and mice lacking Tnf (Tnf-/-) in an acute TNBS colitis model to investigate the role of TNF in colitis and how its presence or absence affects the colonic microbiota. As expected, Tnf-/- had less severe inflammation than WT mice. Microbiome analysis revealed significant Tnf dependent-differences in alpha and beta diversity. There were also notable differences in many species that were also primarily Tnf dependent. Taken together, our data indicates that TNF contributes significantly to the inflammation and microbiotal alterations in that occur in IBD.