This paper presents an algorithm for drawing a sequence of graphs online. The algorithm strives to maintain the global structure of the graph and thus the user's mental map, while allowing arbitrary modifications between consecutive layouts. The algorithm works online and uses various execution culling methods in order to reduce the layout time and handle large dynamic graphs. Techniques for representing graphs on the GPU allow a speedup by a factor of up to 17 compared to the CPU implementation. The scalability of the algorithm across GPU generations is demonstrated. Applications of the algorithm to the visualization of discussion threads in Internet sites and to the visualization of social networks are provided.
This paper presents an algorithm for drawing a sequence of graphs that contain an inherent grouping of their vertex set into clusters. It differs from previous work on dynamic graph drawing in the emphasis that is put on maintaining the clustered structure of the graph during incremental layout. The algorithm works online and allows arbitrary modifications to the graph. It is generic and can be implemented using a wide range of static force-directed graph layout tools. The paper introduces several metrics for measuring layout quality of dynamic clustered graphs. The performance of our algorithm is analyzed using these metrics. The algorithm has been successfully applied to visualizing mobile object software
This paper presents a new algorithm for force directed graph layout on the GPU. The algorithm, whose goal is to compute layouts accurately and quickly, has two contributions. The first contribution is proposing a general multi-level scheme, which is based on spectral partitioning. The second contribution is computing the layout on the GPU. Since the GPU requires a data parallel programming model, the challenge is devising a mapping of a naturally unstructured graph into a well-partitioned structured one. This is done by computing a balanced partitioning of a general graph. This algorithm provides a general multi-level scheme, which has the potential to be used not only for computation on the GPU, but also on emerging multi-core architectures. The algorithm manages to compute high quality layouts of large graphs in a fraction of the time required by existing algorithms of similar quality. An application for visualization of the topologies of ISP (Internet Service Provider) networks is presented.
Many graph layouts include very dense areas, making the layout difficult to understand. In this paper, we propose a technique for modifying an existing layout in order to reduce the clutter in dense areas. A physically inspired evolution process based on a modified heat equation is used to create an improved layout density image, making better use of available screen space. Using results from optimal mass transport problems, a warp to the improved density image is computed. The graph nodes are displaced according to the warp. The warp maintains the overall structure of the graph, thus limiting disturbances to the mental map, while reducing the clutter in dense areas of the layout. The complexity of the algorithm depends mainly on the resolution of the image visualizing the graph and is linear in the size of the graph. This allows scaling the computation according to required running times. It is demonstrated how the algorithm can be significantly accelerated using a graphics processing unit (GPU), resulting in the ability to handle large graphs in a matter of seconds. Results on several layout algorithms and applications are demonstrated.
This paper presents a system for visualizing mobile object frameworks. In such frameworks, the objects can migrate to remote hosts, along with their state and behavior, while the application is running. An innovative graph-based visualization is used to depict the physical and the logical connections in the distributed object network. Scalability is achieved by using a focus+context technique jointly with a user-steered clustering algorithm. In addition, an event synchronization model for mobile objects is presented. The system has been applied to visualizing several mobile object applications.
This paper presents an algorithm for drawing a sequence of graphs that contain an inherent grouping of their vertex set into clusters. It differs from previous work on dynamic graph drawing in the emphasis that is put on maintaining the clustered structure of the graph during incremental layout. The algorithm works online and allows arbitrary modifications to the graph. It is generic and can be implemented using a wide range of static force-directed graph layout tools. The paper introduces several metrics for measuring layout quality of dynamic clustered graphs. The performance of our algorithm is analyzed using these metrics. The algorithm has been successfully applied to visualizing mobile object software.