Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of highly active antiretroviral therapy (HAART)—the current standard of care for treating human immunodeficiency virus (HIV) infection. Despite their efficacy, NRTIs cause numerous treatment-limiting adverse effects, including a distinct peripheral neuropathy, called antiretroviral toxic neuropathy (ATN). ATN primarily affects the extremities with shock-like tingling pain, a pins-and-needles prickling sensation, and numbness. Despite its negative impact on patient quality of life, ATN remains poorly understood, which limits treatment options and potential interventions for people living with HIV (PLWH). Elucidating the underlying pathophysiology of NRTI-induced ATN will facilitate the development of effective treatment strategies and improved patient outcomes. In this article, we will comprehensively review ATN in the setting of NRTI treatment for HIV infection.
Abstract In a clinical study with oral gemcitabine (2′,2′-difluorodeoxycytidine, dFdC), 2′,2′-difluorodeoxyuridine (dFdU) was extensively formed and accumulated after multiple oral dosing. Here, we have investigated the in vitro cytotoxicity, cellular uptake, efflux, biotransformation, and nucleic acid incorporation of dFdC and dFdU. Short-term and long-term cytotoxicity assays were used to assess the cytotoxicity of dFdC and dFdU in human hepatocellular carcinoma HepG2, human lung carcinoma A549, and Madin-Darby canine kidney cell lines transfected with the human concentrative or equilibrative nucleoside transporter 1 (hCNT1 or hENT1), or empty vector. Radiolabeled dFdC and dFdU were used to determine cellular uptake, efflux, biotransformation, and incorporation into DNA and RNA. The compounds dFdC, dFdU, and their phosphorylated metabolites were quantified by high-performance liquid chromatography with UV and radioisotope detection. dFdU monophosphate, diphosphate, and triphosphate (dFdU-TP) were formed from dFdC and dFdU. dFdU-TP was incorporated into DNA and RNA. The area under the intracellular concentration-time curve of dFdC-TP and dFdU-TP and their extent of incorporation into DNA and RNA inversely correlated with the IC50 of dFdC and dFdU, respectively. The cellular uptake and cytotoxicity of dFdU were significantly enhanced by hCNT1. dFdU inhibited cell cycle progression and its cytotoxicity significantly increased with longer duration of exposure. dFdU is taken up into cells with high affinity by hCNT1 and phosphorylated to its dFdU-TP metabolite. dFdU-TP is incorporated into DNA and RNA, which correlated with dFdU cytotoxicity. These data provide strong evidence that dFdU can significantly contribute to the cytotoxicity of dFdC. [Mol Cancer Ther 2008;7(8):2415–25]
Combination antiretroviral drug treatments depend on 3′-deoxy-nucleoside analogs such as 3′-azido-3′-deoxythymidine (AZT) and 2′3′-dideoxyinosine (DDI). Despite being effective in inhibiting human immunodeficiency virus replication, these drugs produce a range of toxicities, including myopathy, pancreatitis, neuropathy, and lactic acidosis, that are generally considered as sequelae to mitochondrial damage. Although cell surface–localized nucleoside transporters, such as human equilibrative nucleoside transporter 2 (hENT2) and human concentrative nucleoside transporter 1 (hCNT1), are known to increase the carrier-mediated uptake of 3′-deoxy-nucleoside analogs into cells, another ubiquitously expressed intracellular nucleoside transporter (namely, hENT3) has been implicated in the mitochondrial transport of 3′-deoxy-nucleoside analogs. Using site-directed mutagenesis, generation of chimeric hENTs, and 3H-permeant flux measurements in mutant/chimeric RNA–injected Xenopus oocytes, here we identified the molecular determinants of hENT3 that dictate membrane translocation of 3′-deoxy-nucleoside analogs. Our findings demonstrated that whereas hENT1 had no significant transport activity toward 3′-deoxy-nucleoside analogs, hENT3 was capable of transporting 3′-deoxy-nucleoside analogs similar to hENT2. Transport analyses of hENT3-hENT1 chimeric constructs demonstrated that the N-terminal half of hENT3 is primarily responsible for the hENT3–3′-deoxy-nucleoside analog interaction. In addition, mutagenic studies identified that 225D and 231L in the N-terminal half of hENT3 partially contribute to the ability of hENT3 to transport AZT and DDI. The identification of the transporter segment and amino acid residues that are important in hENT3 transport of 3′-deoxy-nucleoside analogs may present a possible mechanism for overcoming the adverse toxicities associated with 3′-deoxy-nucleoside analog treatment and may guide rational development of novel nucleoside analogs.
One of the key reasons for why pancreatic cancer has such a poor prognosis is that >80% of diagnoses occur when metastasis has already presented. At the cellular level, activation of the epithelial‐mesenchymal transition (EMT) is significant because it allows for the dissemination of primary tumor cells to distant sites. In this study, we sought to determine the role of a novel oncoprotein, SET, in EMT and pancreatic cancer cell progression. We found that silencing SET reverted EMT by inducing a cuboidal, epithelial morphology and reducing colony formation, cellular proliferation, migration, and invasion. Consistently, SET overexpression was detected in a subset of pancreatic tumors, especially poorly‐differentiated pancreatic ductal adenocarcinomas. Higher levels of SET protein expression were also identified in all pancreatic cancer cell lines compared with normal human pancreatic ductal epithelial cells. SET‐mediated EMT was determined to be a result of cadherin switching during which the SPARC/Slug and Rac1/JNK/c‐Jun/AP‐1 signaling pathways inhibit epithelial E‐cadherin and promote mesenchymal N‐cadherin, respectively. In brief, we elucidated a novel role for the SET protein in inducing EMT through cadherin switching and revealed the molecular pathways involved. These findings have implications for the design and targeting of pathways necessary for intervening pancreatic tumor progression. Grant Funding Source : Supported by NIH 1021RR571367 and 1021RR571381.