Current guidelines and literature on screening for coronary artery calcium for cardiac risk assessment are reviewed for both general and special populations. It is shown that for both general and special populations a zero score excludes most clinically relevant coronary artery disease. The importance of standardization of coronary artery calcium measurements by multidetector CT is discussed.
Objective The aim of this study was to investigate if Hounsfield unit (HU) values from virtual noncontrast (VNC) images derived from portal venous phase spectral-detector computed tomography can help to differentiate adrenal adenomas and metastases. Methods Spectral-detector computed tomography datasets of 33 patients with presence of adrenal lesions and standard of reference for lesion origin by follow-up/prior examinations or dedicated magnetic resonance imaging were included. Conventional and VNC images were reconstructed from the same scan. Region of interest–based image analysis was performed in adrenal lesions and contralateral healthy adrenal tissue. Results The 33 lesions consisted of 23 adenomas and 10 metastases. Hounsfield unit values of all lesions in VNC images were significantly lower compared with conventional images (18.2 ± 12.6 HU vs 59.6 ± 21.7 HU, P < 0.001). Hounsfield unit values in adenomas were significantly lower in VNC images (11.3 ± 6.5 HU vs 34.1 ± 9.1 HU, P < 0.001). Conclusions Virtual noncontrast HU values differed significantly between adrenal adenomas and metastases and can therefore be used for improved characterization of incidental adrenal lesions and definition of adrenal adenomas.
Objectives The objective of this study was to investigate the effect of contrast injection on atherosclerotic coronary plaque attenuation measured using multidetector-row computed tomography. Background Recent multidetector-row computed tomography studies have described the characterization of coronary atherosclerotic plaque on the basis of Hounsfield unit values. The influence of contrast injection on the attenuation of individual plaque components, however, is unknown. Methods Using a pressurized perfusion system, 10 human coronary arteries were examined postmortem with multidetector-row computed tomography and histology. Pre-enhanced, peak-enhanced, and delayed enhanced multidetector-row computed tomography images were acquired during continuous perfusion of the vessel. A total of 37 focal atherosclerotic plaques were identified. Vessel wall attenuation was measured from multidetector-row computed tomography images during all three enhancement phases. On the basis of the histology, plaques were categorized as noncalcified (predominantly fibrous or predominantly fibrofatty), mixed calcified (calcified fibrous or calcified necrotic core), or densely calcified. The mean Hounsfield unit was compared among contrast phases for all plaques and in plaque subgroups. Results We observed contrast enhancement of atherosclerotic plaques within the vessel wall. For noncalcified plaques including both fibrous and fibrofatty plaques, the mean Hounsfield unit of the vessel wall during and after contrast injection exceeded the mean value before injection (t-test, P<0.002). Conclusion The present study demonstrates that intra-arterial injection of iodinated contrast agent results not only in luminal enhancement but also in atherosclerotic plaque enhancement in pressure-perfused coronary arteries imaged ex vivo. Plaque enhancement should be considered when characterizing plaque components on the basis of Hounsfield unit with multidetector-row computed tomography.