Benznidazole (BZ) is one of the two drugs used for Chagas disease treatment. Nevertheless therapeutic failures of BZ have been reported, which were mostly attributed to variable drug susceptibility among Trypanosoma cruzistrains. ATP-binding cassette (ABC) transporters are involved in a variety of translocation processes and some members have been implicated in drug resistance. Here we report the characterisation of the first T. cruzi ABCG transporter gene, named TcABCG1, which is over-expressed in parasite strains naturally resistant to BZ. Comparison ofTcABCG1 gene sequence of two TcI BZ-resistant strains with CL Brener BZ-susceptible strain showed several single nucleotide polymorphisms, which determined 11 amino acid changes. CL Brener transfected with TcI transporter genes showed 40-47% increased resistance to BZ, whereas no statistical significant increment in drug resistance was observed when CL Brener was transfected with the homologous gene. Only in the parasites transfected with TcI genes there was 2-2.6-fold increased abundance of TcABCG1transporter protein. The analysis in wild type strains also suggests that the level of TcABCG1 transporter is related to BZ natural resistance. The characteristics of untranslated regions of TcABCG1genes of BZ-susceptible and resistant strains were investigated by computational tools.
We report here the draft genome sequence of a Klebsiella pneumoniae strain 1194/11, belonging to the hospital-associated sequence type 340 (ST340; clonal complex CC258), isolated from a catheter tip culture from a pediatric patient. The multidrug-resistant strain coproduced the 16S rRNA methyltransferase rRNA RmtG and β-lactamases KPC-2 and CTX-M-15.
Xeroderma pigmentosum (XP) is a rare human syndrome associated with hypersensitivity to sunlight and a high frequency of skin tumours at an early age. We identified a community in the state of Goias (central Brazil), a sunny and tropical region, with a high incidence of XP (17 patients among approximately 1000 inhabitants).To identify gene mutations in the affected community and map the distribution of the affected alleles, correlating the mutations with clinical phenotypes.Functional analyses of DNA repair capacity and cell-cycle responses after ultraviolet exposure were investigated in cells from local patients with XP, allowing the identification of the mutated gene, which was then sequenced to locate the mutations. A specific assay was designed for mapping the distribution of these mutations in the community.Skin primary fibroblasts showed normal DNA damage removal but abnormal DNA synthesis after ultraviolet irradiation and deficient expression of the Polη protein, which is encoded by POLH. We detected two different POLH mutations: one at the splice donor site of intron 6 (c.764 +1 G>A), and the other in exon 8 (c.907 C>T, p.Arg303X). The mutation at intron 6 is novel, whereas the mutation at exon 8 has been previously described in Europe. Thus, these mutations were likely brought to the community long ago, suggesting two founder effects for this rare disease.This work describes a genetic cluster involving POLH, and, particularly unexpected, with two independent founder mutations, including one that likely originated in Europe.