Alternative polyadenylation (APA) plays a role in gene expression regulation generally by shortening of 3'UTRs (untranslated regions) upon proliferative signals and relieving microRNA-mediated repression. Owing to high proliferative indices of triple negative breast cancers (TNBCs), we hypothesized APA to cause 3'UTR length changes in this aggressive subgroup of breast cancers. Our probe-based meta-analysis approach identified 3'UTR length alterations where the significant majority was shortening events (∼70%, 113 of 165) of mostly proliferation-related transcripts in 520 TNBC patients compared with controls. Representative shortening events were further investigated for their microRNA binding potentials by computational predictions and dual-luciferase assay. In silico-predicted 3'UTR shortening events were experimentally confirmed in patient and cell line samples. To begin addressing the underlying mechanisms, we found CSTF2 (cleavage stimulation factor 2), a major regulator of 3'UTR shortening to be up-regulated in response to epidermal growth factor (EGF). EGF treatment also resulted with further shortening of the 3'UTRs. To investigate the contribution of CSTF2 and 3'UTR length alterations to the proliferative phenotype, we showed pharmacological inhibition of the EGF pathway to lead to a reduction in CSTF2 levels. Accordingly, RNAi-induced silencing of CSTF2 decreased the proliferative rate of cancer cells. Therefore, our computational and experimental approach revealed a pattern of 3'UTR length changes in TNBC patients and a potential link between APA and EGF signaling. Overall, detection of 3'UTR length alterations of various genes may help the discovery of new cancer-related genes, which may have been overlooked in conventional microarray gene expression analyses.
The integration of diverse chemical tools like small-molecule inhibitors, activity-based probes (ABPs), and proteolysis targeting chimeras (PROTACs) advances clinical drug discovery and facilitates the exploration of various biological facets of targeted proteins. Here, we report the development of such a chemical toolbox for the human Parkinson disease protein 7 (PARK7/DJ-1) implicated in Parkinson's disease and cancers. By combining structure-guided design, miniaturized library synthesis, and high-throughput screening, we identified two potent compounds,
Abstract Certain aspects of diagnosis, prognosis, and treatment of cancer patients are still important challenges to be addressed. We developed a pipeline to uncover patterns of alternative polyadenylation (APA), a hidden complexity in cancer transcriptomes, to further accelerate efforts to discover novel cancer genes and pathways. Here, we found a significant shift in usage of poly(A) signals in six common tumor types compared to normal tissues. We further defined specific subsets of APA events to efficiently classify cancer types/subtypes. Triple negative breast cancers, for example, have specific 3'UTR length alterations where the significant majority are shortening events (70%, 113 of 165) of mostly proliferation-related transcripts compared with normal breast tissue. Such shortening events correlate with increased protein levels and relapse free survival of patients, suggesting functional significance of isoform variability. In line with this isoform diversity, we also detected deregulated expression of mRNA polyadenylation complex proteins in breast cancer cells. Of note, APA proteins are responsive to proliferative signals including estrogen and epidermal growth factor, suggesting a potential explanation to 3'-end isoform diversity in cancer cells. Overall, our study offers a computational and experimental approach for use of APA in novel gene discovery and classification in common tumor types, with important implications in basic research, biomarker discovery, and precision medicine approaches. Citation Format: Oguzhan Begik, Melda Ercan, Harun Cingoz, Tolga Can, Merve Oyken, Ayse Elif Erson-Bensan. Deregulated APA and cancer specific APA isoforms [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2360.
Certain aspects of diagnosis, prognosis, and treatment of cancer patients are still important challenges to be addressed. Therefore, we propose a pipeline to uncover patterns of alternative polyadenylation (APA), a hidden complexity in cancer transcriptomes, to further accelerate efforts to discover novel cancer genes and pathways. Here, we analyzed expression data for 1045 cancer patients and found a significant shift in usage of poly(A) signals in common tumor types (breast, colon, lung, prostate, gastric, and ovarian) compared to normal tissues. Using machine-learning techniques, we further defined specific subsets of APA events to efficiently classify cancer types. Furthermore, APA patterns were associated with altered protein levels in patients, revealed by antibody-based profiling data, suggesting functional significance. Overall, our study offers a computational approach for use of APA in novel gene discovery and classification in common tumor types, with important implications in basic research, biomarker discovery, and precision medicine approaches.
Abstract Alternative polyadenylation (APA) plays a role in gene expression regulation generally by shortening of 3'UTRs and relieving microRNA-mediated repression. Therefore, APA is gaining increased attention as a potential mechanism to activate oncogenes. Owing to high proliferative indices of triple negative breast cancers (TNBCs), we hypothesized APA to cause 3'UTR length changes in this aggressive subgroup of breast cancers. Our probe-based meta-analysis approach identified 3'UTR length alterations where the significant majority was shortening events (70%, 113 of 165) of mostly proliferation-related transcripts in over 500 TNBC patients compared with normal breast tissue. Representative shortening events correlated with increased protein levels and relapse free survival of patients, suggesting functional significance of isoform variability. To begin addressing the underlying mechanisms of 3’UTR shortening, we turned to APA machinery proteins. We detected variable expression of APA machinery proteins in different breast cancer subtypes but CSTF2 (cleavage stimulation factor 2) has the most prominent overexpression in breast cancer cells. Therefore, among potential regulators of 3’UTR shortening, we further investigated the role of CSTF2 in proximal polyA signal selection. Because some of the TNBC patients are EGFR positive, we found EGF treatment to cause increased CSTF2 levels. Higher CSTF2 levels indeed correlated with further shortening of the 3'UTRs. Accordingly, RNAi-induced silencing of CSTF2 decreased the proliferative rate of cancer cells. Therefore, our integrated approach revealed a pattern of 3'UTR length changes in TNBC patients and a potential link between APA and EGF signaling. Further studies are underway to investigate the mechanistic link between EGF signaling and regulation of 3’UTR lengths. (This work is funded by TUBITAK 112S478 and 114Z884) Citation Format: Ayse Elif Erson-Bensan, Begum H. Akman, Merve Oyken, Hizlan H. Agus, Esra Yavuz, Murat Erdem, Tolga Can. APA isoform diversity in triple negative breast cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3374. doi:10.1158/1538-7445.AM2017-3374
ALCAM (Activated Leukocyte Cell AdhesionMolecule), also known as CD166 (cluster of differentiation 166), is a member of a subfamily of immunoglobulin receptors with five immunoglobulin-like domains (VVC2C2C2) in the extracellular domain.