The analysis of intravascular indicator dynamics is important for cardiovascular diagnostics as well as for the assessment of tissue perfusion, aimed at the detection of ischemic regions or cancer hypervascularization. To this end, indicator dilution curves are measured after the intravenous injection of an indicator bolus and fitted by parametric models for the estimation of the hemodynamic parameters of interest. Based on heuristic reasoning, the dilution process is often modeled by a gamma variate. In this paper, we provide both a physical and stochastic interpretation of the gamma variate model. The accuracy of the model is compared with the local density random walk model, a known model based on physics principles. Dilution curves were measured by contrast ultrasonography both in vitro and in vivo (20 patients). Blood volume measurements were used to test the accuracy and clinical relevance of the estimated parameters. Both models provided accurate curve fits and volume estimates. In conclusion, the proposed interpretations of the gamma variate model describe physics aspects of the dilution process and lead to a better understanding of the observed parameters, increasing the value and credibility of the model, and possibly expanding its diagnostic applications.
Indicator-dilution methods are widely used by many medical imaging techniques and by dye-, lithium-, and thermodilution measurements. The measured indicator dilution curves are typically fitted by a mathematical model to estimate the hemodynamic parameters of interest. This paper presents a new maximum-likelihood algorithm for parameter estimation, where indicator dilution curves are considered as the histogram of underlying transit-time distribution. Apart from a general description of the algorithm, semianalytical solutions are provided for three well-known indicator dilution models. An adaptation of the algorithm is also introduced to cope with indicator recirculation. In simulations as well as in experimental data obtained by dynamic contrast-enhanced ultrasound imaging, the proposed algorithm shows a superior parameter estimation accuracy over nonlinear least-squares regression. The feasibility of the algorithm for use in vivo is evaluated using dynamic contrast-enhanced ultrasound recordings obtained with the purpose of prostate cancer detection. The proposed algorithm shows an improved ability (increase in receiver-operating characteristic curve area of up to 0.13) with respect to existing methods to differentiate between healthy tissue and cancer.
Aims: To lower the threshold for applying ultrasound (US) guidance during peripheral intravenous cannulation, nurses need to be trained and gain experience in using this technique. The primary outcome was to quantify the number of procedures novices require to perform before competency in US-guided peripheral intravenous cannulation was achieved. Materials and methods: A multicenter prospective observational study, divided into two phases after a theoretical training session: a hands-on training session and a supervised life-case training session. The number of US-guided peripheral intravenous cannulations a participant needed to perform in the life-case setting to become competent was the outcome of interest. Cusum analysis was used to determine the learning curve of each individual participant. Results: Forty-nine practitioners participated and performed 1855 procedures. First attempt cannulation success was 73% during the first procedure, but increased to 98% on the fortieth attempt (p<0.001). The overall first attempt success rate during this study was 93%. The cusum learning curve for each practitioner showed that a mean number of 34 procedures was required to achieve competency. Time needed to perform a procedure successfully decreased when more experience was achieved by the practitioner, from 14±3 minutes on first proce-dure to 3±1 minutes during the fortieth procedure (p<0.001). Conclusions: Competency in US-guided peripheral intravenous cannulation can be gained after following a fixed educational curriculum, resulting in an increased first attempt cannulation success as the number of performed procedures increased.
Nowadays, patients with symptomatic heart failure and intraventricular conduction delay can be treated with a cardiac resynchronization therapy. Electrical dyssynchrony is typically adopted to represent myocardial dyssynchrony, to be compensated by cardiac resynchronization therapy. One third of the patients, however, does not respond to the therapy. Therefore, imaging modalities aimed at the mechanical dyssynchrony estimation have been recently proposed to improve patient selection criteria. This paper presents a novel fully-automated method for regional mechanical left-ventricular dyssynchrony quantification in short-axis magnetic resonance imaging. The endocardial movement is described by time-displacement curves with respect to an automatically-determined reference point. These curves are analyzed for the estimation of the regional contraction timings. Four methods are proposed and tested for the contraction timing estimation. They were evaluated in two groups of subjects with and without left bundle branch block. The standard deviation of the contraction timings showed a significant increase for left bundle branch block patients with all the methods. However, a novel method based on phase spectrum analysis shows a better specificity and sensitivity. This method may therefore provide a valuable prognostic indicator for heart failure patients with dyssynchronous ventricular contraction, adding new possibilities for regional timing analysis.
Abstract Heart failure is a chronic disease marked by frequent hospitalizations due to pulmonary fluid congestion. Monitoring the thoracic fluid status may favor the detection of fluid congestion in an early stage and enable targeted preventive measures. Bioelectrical impedance spectroscopy (BIS) has been used in combination with the Cole model for monitoring body composition including fluid status. The model parameters reflect intracellular and extracellular fluid volume as well as cell sizes, types and interactions. Transthoracic BIS may be a suitable approach to monitoring variations in thoracic fluid content.
During needle interventions, successful automated detection of the needle immediately after insertion is necessary to allow the physician identify and correct any misalignment of the needle and the target at early stages, which reduces needle passes and improves health outcomes.We present a novel approach to localize partially inserted needles in 3D ultrasound volume with high precision using convolutional neural networks. We propose two methods based on patch classification and semantic segmentation of the needle from orthogonal 2D cross-sections extracted from the volume. For patch classification, each voxel is classified from locally extracted raw data of three orthogonal planes centered on it. We propose a bootstrap resampling approach to enhance the training in our highly imbalanced data. For semantic segmentation, parts of a needle are detected in cross-sections perpendicular to the lateral and elevational axes. We propose to exploit the structural information in the data with a novel thick-slice processing approach for efficient modeling of the context.Our introduced methods successfully detect 17 and 22 G needles with a single trained network, showing a robust generalized approach. Extensive ex-vivo evaluations on datasets of chicken breast and porcine leg show 80 and 84% F1-scores, respectively. Furthermore, very short needles are detected with tip localization errors of less than 0.7 mm for lengths of only 5 and 10 mm at 0.2 and 0.36 mm voxel sizes, respectively.Our method is able to accurately detect even very short needles, ensuring that the needle and its tip are maximally visible in the visualized plane during the entire intervention, thereby eliminating the need for advanced bi-manual coordination of the needle and transducer.
Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.
Background and objectives Currently, no evidence-based criteria exist for decision making in the post anesthesia care unit (PACU). This could be valuable for the allocation of postoperative patients to the appropriate level of care and beneficial for patient outcomes such as unanticipated intensive care unit (ICU) admissions. The aim is to assess whether the inclusion of intra- and postoperative factors improves the prediction of postoperative patient deterioration and unanticipated ICU admissions. Methods A retrospective observational cohort study was performed between January 2013 and December 2017 in a tertiary Dutch hospital. All patients undergoing surgery in the study period were selected. Cardiothoracic surgeries, obstetric surgeries, catheterization lab procedures, electroconvulsive therapy, day care procedures, intravenous line interventions and patients under the age of 18 years were excluded. The primary outcome was unanticipated ICU admission. Results An unanticipated ICU admission complicated the recovery of 223 (0.9%) patients. These patients had higher hospital mortality rates (13.9% versus 0.2%, p<0.001). Multivariable analysis resulted in predictors of unanticipated ICU admissions consisting of age, body mass index, general anesthesia in combination with epidural anesthesia, preoperative score, diabetes, administration of vasopressors, erythrocytes, duration of surgery and post anesthesia care unit stay, and vital parameters such as heart rate and oxygen saturation. The receiver operating characteristic curve of this model resulted in an area under the curve of 0.86 (95% CI 0.83–0.88). Conclusions The prediction of unanticipated ICU admissions from electronic medical record data improved when the intra- and early postoperative factors were combined with preoperative patient factors. This emphasizes the need for clinical decision support tools in post anesthesia care units with regard to postoperative patient allocation.
During needle interventions for e.g. regional anaesthesia or biopsy, it is very important to visualize the needle and its tip with respect to important structures in the body. In this work, we propose a novel image-based needle detection technique in a 3D ultrasound volume dataset, which can improve the intervention. We present a novel application of the 3D Gabor transformation, which exploits needle-like structures with appropriate designs. Furthermore, we introduce a needle tracking algorithm based on Gradient Descent and show that it limits the computational complexity and detection error. Finally, we visualize the needle on 2D cross-sections of the volume in order to be presented to the physician. Evaluation of our system in challenging cases shows a high detection score (up to 100% but needs larger sets) and accurate visualization.