Prophylactic enoxaparin is used to prevent venous thromboembolism (VTE) in surgical and trauma patients. However, VTE remains an important source of morbidity and mortality, potentially exacerbated by antithrombin III or anti-Factor Xa deficiencies and missed enoxaparin doses. Recent data suggest that a difference in reaction time (time to initial fibrin formation) greater than 1 minute between heparinase and standard thrombelastogram (TEG) is associated with a decreased risk of VTE.To evaluate the effectiveness of TEG-adjusted prophylactic enoxaparin dosing among trauma and surgical patients.This randomized clinical trial, conducted from October 2012 to May 2015, compared standard dosing (30 mg twice daily) with TEG-adjusted enoxaparin dosing (35 mg twice daily) for 185 surgical and trauma patients screened for VTE at 3 level I trauma centers in the United States.The incidence of VTE, bleeding complications, anti-Factor Xa deficiency, and antithrombin III deficiency.Of the 185 trial participants, 89 were randomized to the control group (median age, 44.0 years; 55.1% male) and 96 to the intervention group (median age, 48.5 years; 74.0% male). Patients in the intervention group received a higher median enoxaparin dose than control patients (35 mg vs 30 mg twice daily; P < .001). Anti-Factor Xa levels in intervention patients were not higher than levels in control patients until day 6 (0.4 U/mL vs 0.21 U/mL; P < .001). Only 22 patients (11.9%) achieved a difference in reaction time greater than 1 minute, which was similar between the control and intervention groups (10.4% vs 13.5%; P = .68). The time to enoxaparin initiation was similar between the control and intervention groups (median [range] days, 1.0 [0.0-2.0] vs 1.0 [1.0-2.0]; P = .39), and the number of patients who missed at least 1 dose was also similar (43 [48.3%] vs 54 [56.3%]; P = .30). Rates of VTE (6 [6.7%] vs 6 [6.3%]; P > .99) were similar, but the difference in bleeding complications (5 [5.6%] vs 13 [13.5%]; P = .08) was not statistically significant. Antithrombin III and anti-Factor Xa deficiencies and hypercoagulable TEG parameters, including elevated coagulation index (>3), maximum amplitude (>74 mm), and G value (>12.4 dynes/cm2), were prevalent in both groups. Identified risk factors for VTE included older age (61.0 years vs 46.0 years; P = .04), higher body mass index (calculated as weight in kilograms divided by height in meters squared; 30.6 vs 27.1; P = .03), increased Acute Physiology and Chronic Health Evaluation II score (8.5 vs 7.0; P = .03), and increased percentage of missed doses per patient (14.8% vs 2.5%; P = .05).The incidence of VTE was low and similar between groups; however, few patients achieved a difference in reaction time greater than 1 minute. Antithrombin III deficiencies and hypercoagulable TEG parameters were prevalent among patients with VTE. Low VTE incidence may be due to an early time to enoxaparin initiation and an overall healthier and less severely injured study population than previously reported.clinicaltrials.gov Identifier: NCT00990236.
BACKGROUND The incidence of deep venous thrombosis (DVT) remains high in general surgery and trauma patients despite widespread prophylaxis with enoxaparin. A recent study demonstrated decreased incidence of DVT if patients on enoxaparin had a change in R time (ΔR) of greater than 1 minute when heparinase-activated thromboelastography (TEG) was compared with normal TEG. We hypothesized that using ΔR-guided dosing would result in decreased DVT rates. METHODS A prospective, randomized controlled trial was performed at a Level 1 trauma center. Both trauma and general surgery patients were included. Upon enrollment, demographic data including age, sex, body mass index, and Acute Physiology and Chronic Health Evaluation II score were obtained. Enrolled patients were randomized to standard (30 mg twice a day) or TEG-guided dosing. Dose-adjusted patients underwent daily enoxaparin titration to achieve an ΔR of 1 minute to 2 minutes. Venous thromboembolism screening was performed per institutional protocol. Antithrombin III (AT-III) and anti-Xa levels were drawn at peak enoxaparin concentrations. RESULTS A total of 87 patients were enrolled. There was no difference in demographic data between the groups. No pulmonary emboli were identified. The control group had a DVT rate of 16%, while the experimental group had a rate of 14% (p = nonsignificant). The experimental group's median enoxaparin dosage, 50 mg twice a day, was significantly higher than that of the control (p < 0.01). TEG ΔR was not different between the control and experimental groups. Beginning at Day 3, anti-Xa levels were higher in the experimental group (p < 0.05). There was no difference in AT-III activity between the two groups; 67% of the patients demonstrated AT-III deficiency. CONCLUSION TEG adjusted enoxaparin dosing led to significant increases in anti-Xa activity, which did not correlate with a decreased DVT rate. Failure to reduce the DVT rate and increase ΔR despite increased dosing and increased anti-Xa activity is consistent with the high rate of AT-III deficiency detected in this study cohort. These data suggest that the future of DVT prevention may not lie in the optimization of low molecular weight heparin therapy but rather in compounds that increase antithrombin directly or operate independently of the AT-III pathway. LEVEL OF EVIDENCE Therapeutic study, level III.
The mechanisms by which prolonged estrogen exposures, such as estrogen therapy and pregnancy, reduce thymus weight, cellularity, and CD4 and CD8 phenotype expression, have not been well defined. In this study, the roles played by the membrane estrogen receptor, G protein-coupled receptor 30 (GPR30), and the intracellular estrogen receptors, estrogen receptor alpha (ERalpha) and beta (ERbeta), in 17beta-estradiol (E2)-induced thymic atrophy were distinguished by construction and the side-by-side comparison of GPR30-deficient mice with ERalpha and ERbeta gene-deficient mice. Our study shows that whereas ERalpha mediated exclusively the early developmental blockage of thymocytes, GPR30 was indispensable for thymocyte apoptosis that preferentially occurs in T cell receptor beta chain(-/low) double-positive thymocytes. Additionally, G1, a specific GPR30 agonist, induces thymic atrophy and thymocyte apoptosis, but not developmental blockage. Finally, E2 treatment attenuates the activation of nuclear factor-kappa B in CD25(-)CD4(-)CD8(-) double-negative thymocytes through an ERalpha-dependent yet ERbeta- and GPR30-independent pathway. Differential inhibition of nuclear factor-kappaB by ERalpha and GPR30 might underlie their disparate physiological effects on thymocytes. Our study distinguishes, for the first time, the respective contributions of nuclear and membrane E2 receptors in negative regulation of thymic development.
BACKGROUND Low tissue oxygenation (StO 2 ) is associated with poor outcomes in obese trauma patients. A novel treatment could be the transfusion of cryopreserved packed red blood cells (CPRBCs), which the in vitro biochemical profile favors red blood cell (RBC) function. We hypothesized that CPRBC transfusion improves StO 2 in obese trauma patients. METHODS Two hundred forty-three trauma patients at five Level I trauma centers who required RBC transfusion were randomized to receive one to two units of liquid packed RBCs (LPRBCs) or CPRBCs. Demographics, injury severity, StO 2 , outcomes, and biomarkers of RBC function were compared in nonobese (body mass index [BMI] < 30) and obese (BMI ≥ 30) patients. StO 2 was also compared between obese patients with BMI of 30 to 34.9 and BMI ≥ 35. StO 2 was normalized and expressed as % change after RBC transfusion. A p value less than 0.05 indicated significance. RESULTS Patients with BMI less than 30 (n = 141) and BMI of 30 or greater (n = 102) had similar Injury Severity Score, Glasgow Coma Scale, and baseline StO 2 . Plasma levels of free hemoglobin, an index of RBC lysis, were lower in obese patients after CPRBC (125 [72–259] μg/mL) versus LPRBC transfusion (230 [178–388] μg/mL; p < 0.05). StO 2 was similar in nonobese patients regardless of transfusion type, but improved in obese patients who received CPRBCs (104 ± 1%) versus LPRPCs (99 ± 1%, p < 0.05; 8 hours after transfusion). Subanalysis showed improved StO 2 after CPRBC transfusion was specific to BMI of 35 or greater, starting 5 hours after transfusion ( p < 0.05 vs. LPRBCs). CPRBCs did not improve clinical outcomes in either group. CONCLUSION CPRBC transfusion is associated with increased StO 2 and lower free hemoglobin levels in obese trauma patients, but did not improve clinical outcomes. Future studies are needed to determine if CPRBC transfusion in obese patients attenuates hemolysis to improve StO 2 . LEVEL OF EVIDENCE Therapeutic, level IV.
Progression of intracranial hemorrhage (PICH) is a significant cause of secondary brain injury in patients with traumatic brain injury (TBI). Previous studies have implicated a variety of mediators that contribute to PICH. We hypothesized that patients with PICH would display either a hypocoagulable state, hyperfibrinolysis, or both. We conducted a prospective study of adult trauma patients with isolated TBI. Blood was obtained for routine coagulation assays, platelet count, fibrinogen, thrombelastography, markers of thrombin generation, and markers of fibrinolysis at admission and 6, 12, 24, and 48 h. Univariate analyses were performed to compare baseline characteristics between groups. Linear regression models were created, adjusting for baseline differences, to determine the relationship between individual assays and PICH. One hundred forty-one patients met entry criteria, of whom 71 had hemorrhage progression. Patients with PICH had a higher Injury Severity Score and Abbreviated Injury Scale score (head), a lower Glasgow Coma Scale score, and lower plasma sodium on admission. Patients with PICH had higher D-dimers on admission. After adjusting for baseline differences, elevated D-dimers remained significantly associated with PICH compared to patients without PICH at admission. Hypocoagulation was not significantly associated with PICH in these patients. The association between PICH and elevated D-dimers early after injury suggests that fibrinolytic activation may contribute to PICH in patients with TBI.
The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7–8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms.
BACKGROUND Moderate injury can lead to a coagulopathy. Fresh frozen plasma (FFP) corrects coagulopathy by means of a balanced array of clotting factors. We sought to compare the late effects of FFP and a prothrombin complex concentrate (PCC) on the coagulopathy of trauma using a porcine model of pulmonary contusion (PC) and hemorrhagic shock (HS) designed to evaluate the organ protective effects of these treatments. METHODS Female Yorkshire swine (40–50 kg) were randomized to receive PC + HS or control (instrumented and uninjured). A blunt PC was created using a captive bolt gun. To induce HS, a liver crush injury was performed. Eighty minutes after injury, swine were treated with 25 U·kg −1 PCC, 1 U FFP, or 50 mL lactated Ringer’s vehicle in a blinded manner. Arterial blood samples were drawn every 6 hours. Swine were euthanized 48 hours postinjury. Data were analyzed by Pearson χ 2 , analysis of variance and Kruskal-Wallis tests with Tukey’s or Mann-Whitney U tests for post hoc analysis. RESULTS Twenty-seven swine received PC + HS, 3 groups of 9 per group received PCC, FFP, or vehicle. Nine were noninjured controls. When compared with control, PC + HS swine had significantly shortened R time at 6 hours, 36 hours, and 42 hours, decreased LY30 at 12 hours, shortened K time at 30 hours and reduced α angle at 42 hours. PC + HS swine showed significant differences between treatment groups in K and α angle at 3 hours, LY30 at 12 hours and 18 hours, and MA at 12 hours, 18 hours, and 30 hours. Post hoc analysis was significant for higher α angle in PCC versus vehicle at 3 hours, higher MA in vehicle versus PCC at 12 hours and 18 hours, and higher LY30 in PCC versus vehicle at 18 hours ( p < 0.012) with no significant differences between FFP and vehicle. CONCLUSION Severe injury with HS induced a coagulopathy in swine. While FFP maintained normal coagulation following injury, PCC induced more rapid initial clot propagation in injured animals.
BACKGROUND Trauma is the third leading cause of death in the United States and the primary cause of death for people between the ages of 1 year and 44 years. In addition to tissue damage, trauma may also activate an inflammatory state known as trauma-induced coagulopathy (TIC) that is associated with clotting malfunctions, acidemia, and end-organ dysfunction. Prior work has also demonstrated benefit to acknowledging the type and severity of endothelial injury, coagulation derangements, and systemic inflammation in the management of trauma patients. This study builds upon prior work by combining laboratory, metabolic, and clinical metrics into an analysis of trauma phenotypes, evolution of phenotypes over time after trauma, and significance of trauma phenotype on mortality. METHODS Seventy 3-month-old female Yorkshire crossbred swine were randomized to injury and resuscitation groups. Principal component analysis (PCA) of longitudinal swine TEG data (Reaction time, Alpha-Angle, Maximum Amplitude, and Clot Lysis at 30 minutes), pH, lactate, and MAP was completed in R at baseline, 1 hour postinjury, 3 hours postinjury, 6 hours postinjury, and 12 hours postinjury. Subjects were compared by principal component factor scores to assess differences in survival, injury severity, and treatment group. RESULTS Among injured animals, three phenotypes were observed at each time point. Five phenotypes were associated with differences in survival, and of these, four were associated with differences in injury severity. Phenotype alignment was not significantly different by treatment group. CONCLUSION This application of PCA to a set of coagulation, hemodynamic, and organ perfusion variables has identified multiple evolving phenotypes after trauma. Some of these phenotypes may correlate with injury severity and may have implications for survival. Next steps include validating these findings over greater numbers of subjects and exploring other machine-learning techniques for phenotype identification. LEVEL OF EVIDENCE Level IV, Therapeutic/Care Management