Organisms, including humans, are subjected to the simultaneous action of a wide variety of pollutants, the effects of which should not be considered in isolation, as many synergies and antagonisms have been found between many of them. Therefore, this work proposes an in vivo study to evaluate the effect of certain metal contaminants on the bioavailability and metabolism of pharmacologically active compounds. Because the most frequent entry vector is through ingestion, the influence of the gut microbiota and the possible protective effects of selenium has been additionally evaluated.
We evaluated whether quantitation of mRNA molecules of key genes is a reliable biomonitoring end-point. We examined the Mus spretus expression levels of 19 transcripts encoding different cytochrome-P450s and glutathione transferases. Mice dwelling at the Doñana Biological Reserve were compared to those from an industrial settlement (PS). Metal biomonitoring indicated that PS animals sustained a heavier pollutant burden than those from the reference site. Transcript quantitations showed the following: (i) gender-related differences in the expression of most Cyp and Gst genes; (ii) one PS female displaying much smaller/larger transcript amounts than the remaining females; (iii) the concomitant up-regulation of Cyp1a2, Cyp2a5, Cyp2e1, Cyp4a10, Gsta1, Gsta2, Gstm1, and Gstm2 mRNAs in liver of PS males; and (iv) outstanding qualitative and quantitative differences between the hepatic expression signature of PS males and that promoted by paraquat. We conclude that (i) absolute amounts of transcripts encoding biotransformation enzymes are more potent biomarkers in males than in females, and in liver than in kidney; (ii) individual quantitations prevent biased interpretations by specimens with abnormal expression levels; and (iii) transcript expression signature of PS males is consistent with exposure to a complex profile of organic pollutants, other than oxidative stressors.
Abstract Gene expression for Th1/Th2 cytokines (IL-4 and IFN-ɣ), regulatory cytokines (TGF - β and IL - 10) and the transcriptional factor FoxP3 was analyzed in the liver and hepatic lymph nodes (HLN) from sheep immunized with partially protective and non-protective vaccine candidates and challenged with Fasciola hepatica . FoxP3 T cells were also evaluated by immunohistochemistry (IHQ). The most remarkable difference between the partially protected vaccinated (V1) group and the non-protected vaccinated (V2) group was a more severe expansion of FoxP3 T cells recorded by IHQ in both the liver and HLN of the V2 group as compared to the V1 group, whereas no differences were found between the V2 group and the infected control (IC) group. Similar results were recorded for FoxP3 gene expression although significant differences among V1 and V2 groups were only significant in the HLN, while FoxP3 gene expression was very similar in the V2 and IC groups both in the liver and HLN. No significant differences for the remaining cytokines were recorded between the V1 and V2 groups, but in the liver the V2 group shows significant increases of IFN-ɣ and IL-10 as compared to the uninfected control (UC) group whereas the V1 group did not. The lower expansion of FoxP3 T cells and lower increase of IFN-ɣ and IL-10 in the partially protected vaccinated group may be related with lower hepatic lesions and fluke burdens recorded in this group as compared to the other two infected groups. The most relevant change in regulatory cytokine gene expression was the significant increase of TGF-β in the liver of IC, V1 and V2 groups as compared to the UC group, which could be related to hepatic lesions.
The Spanish dehesas have been severely affected by human activities that date to the prehistoric period and have suffered accelerated decline since the 1980s. Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) is a key component of this system, and its acorns provide an important food source for wildlife and domesticated livestock. Our earlier work showed structured variation in acorn morphology and biochemistry. Here, we used chloroplast and nuclear microsatellites to detect genetic structure among populations of Q. ilex from the major biogeographic regions of Andalusia. We found high levels of spatial differentiation with chloroplast DNA indicating little seed dispersal among populations. Spatial differentiation was weaker for nuclear DNA, presumably as a result of more widespread pollen dispersal and its larger effective population size. The Baetic Cordillera (Cádiz) population consistently appeared well separated from populations of the northern Sierra Morena, suggesting that the Guadalquivir Valley has played an important role in determining population divergence. This may be, in part, evolutionary, as suggested by chloroplast DNA, and, in part, a result of human-induced population isolation, as Q. ilex has been removed from the Guadalquivir Valley. Evolutionary gene flow rates were greater than contemporary rates, which were limited to unidirectional gene flow from Córdoba to other populations in the Sierra Morena and, surprisingly, to the southern population at Almería. The inconsistency between evolutionary and recent migration rates suggests an effect of anthropogenic activity over the last few generations of Q. ilex.
Immunidiffusion and titration studies with antibodies against glutamine synthetase of the purple, photosynthetic bacterium Rhodobacter capsulatus E1F1 have been performed to compare the enzyme from different sources. The results obtained suggest that dodecameric glutamine synthetases from bacteria and cyanobacteria are antigenically related. However, there is not a marked antigenic relationship between glutamine synthetase of R. capsulatus and the octameric enzymes of eukaryotes.
Sun-dried Pedro Ximénez white grapes must (PXM) is a potent antioxidant that regularizes apoptosis, proliferation, and regeneration of the structure and the function of aged mice liver. PXM consumption contributes to a healthy aging process.
Abstract Escherichia coli K‐12 strains completely lacking catalase activity due to mutations in katG , katE , and katF genes were constructed in order to assess the role of hydrogen peroxide in mutagenesis. Mutagenesis was monitored by selecting forward mutations to L‐arabinose resistance. Lethality was measured at experimental conditions equivalent to those of the mutant yield by using a mixed culture of pairs of isogenic strains distinguished by their differential nutritional requirements. Deficiency in katG , katE , and katF genes leads to an enhanced spontaneous mutation rate as well as an enhanced sensitivity to both the lethal and mutagenic effects of hydrogen peroxide or an H 2 O 2 ‐generating mixture of compounds, such as coffee. To compare further the responses of the catalase‐deficient bacteria to those of catalase‐proficient counterparts, other genotoxins were analyzed. Both catalase‐deficient and catalase‐proficient strains were equally mutated by MMS, 4‐NQO, and ultraviolet light. It is concluded that the bacterial strains and the mutagenicity tests described in the paper represent a useful tool to study the role of H 2 O 2 in mutagenesis.