ABSTRACT Porcine enteric calicivirus (PEC) is associated with diarrhea in pigs, and to date it is the only cultivable enteric calicivirus (tissue culture-adapted [TC] PEC/Cowden). Based on sequence analysis of cDNA clones and reverse transcription-PCR products, TC PEC/Cowden has an RNA genome of 7,320 bp, excluding its 3′ poly(A) + tail. The genome is organized in two open reading frames (ORFs), similar to the organizations of the human Sapporo-like viruses (SLVs) and the lagoviruses. ORF1 encodes the polyprotein that is fused to and contiguous with the capsid protein. ORF2 at the 3′ end encodes a small basic protein of 164 amino acids. Among caliciviruses, PEC has the highest amino acid sequence identities in the putative RNA polymerase (66%), 2C helicase (49.6%), 3C-like protease (43.7%), and capsid (39%) regions with the SLVs, indicating that PEC is genetically most closely related to the SLVs. The complete RNA genome of wild-type (WT) PEC/Cowden was also sequenced. Sequence comparisons revealed that the WT and TC PEC/Cowden have 100% nucleotide sequence identities in the 5′ terminus, 2C helicase, ORF2, and the 3′ nontranslated region. TC PEC/Cowden has one silent mutation in its protease, two amino acid changes and a silent mutation in its RNA polymerase, and five nucleotide substitutions in its capsid that result in one distant and three clustered amino acid changes and a silent mutation. These substitutions may be associated with adaptation of TC PEC/Cowden to cell culture. The cultivable PEC should be a useful model for studies of the pathogenesis, replication, and possible rescue of uncultivable human enteric caliciviruses.
Gliosarcoma (GS) is a rare subtype of glioblastoma multiforme (GBM), which shows a dimorphic population of glial and mesenchymal elements. The cytopathology of GS to our knowledge has not been previously described. Although prognostically insignificant within the group of GBM, an accurate recognition of this subtype may help to rule out other morphologically similar primary and metastatic central nervous system (CNS) neoplasms. Thirteen cases of histologically confirmed GS with concomitant touch imprints (TI) or prior fine-needle aspiration (FNA) were retrieved from the files of The Johns Hopkins Hospital (1985-2002). A comprehensive review of the clinico-radiologic, cytologic, and histologic material was undertaken to define the morphologic characteristics of GS. Material was obtained via computerized tomography (CT)-guided needle biopsy. Slides were stained with DiffQuik and/or hematoxylin and eosin (H and E) stains. Smears were highly cellular and showed a high-grade neoplasm with glial and mesenchymal elements. The latter component, however, predominated and showed a variety of phenotypic patterns, which included fibrosarcoma-like, rhabdoid type, osteoclastic giant cell type, undifferentiated type, and tumor with heterologous components (such as chondroid or osteoid tissue). A rich arborizing capillary network was evident, as were a high mitosis/karyorrhexis index and foci of necrosis. The glial component consisted of pleomorphic round to oval nuclei and numerous gemistocytes embedded in a fibrillary stroma.
The term “telepathology” was introduced into the English language in 1986 by Weinstein,[1,2] and since then there have been many advances and publications.[3,4,5,6,7,8,9,10,11,12,13] The practice of telepathology involves obtaining macroscopic and/or microscopic images for transmission along telecommunication links for obtaining a remote interpretation (telediagnosis), second opinion or consultation (teleconsultation), quality assurance, education, teaching, self-study, and research (tele-education). A variety of terms has been used interchangeably to refer to telepathology including digital microscopy, remote robotic microscopy, teleconferencing, teleconsultation, telemicroscopy, video microscopy, virtual microscopy, and whole slide imaging (WSI).[9,11,14]
With advances in technology and widespread access to the Internet, telepathology is increasingly being used around the world, improving rapid sharing of cases and access to expert pathologists. Telepathology can be used for remote-site interpretation of all types of pathology material including, but not limited to, H&E stained paraffin tissue sections, frozen sections, cytology or hematology slides, microbiology specimens, clinical fluids (e.g. urine), electron micrographs, electrophoresis gels, and cytogenetics images.[2,15,16,17,18,19,20,21,22,23,24] In practice, these digital images are typically linked to patient information including identification/medical record numbers, clinical history, and relevant laboratory and radiology data.[25]
Table 1 summarizes milestones of the many technological advances in telepathology.[14] The primary modes of telepathology include static imaging, dynamic imaging, hybrid static/dynamic telepathology, and WSI.
Tabel 1
Telepathology system classification[14]
The incidence and mortality of prostate cancer (PCa) vary greatly in different geographic regions, for which lifestyle factors, such as dietary fat intake, have been implicated. Human 15-lipoxygenase-1 (h15-LO-1), which metabolizes polyunsaturated fatty acids, is a highly regulated, tissue-specific, lipid-peroxidating enzyme that functions in physiological membrane remodeling and in the pathogenesis of atherosclerosis, inflammation, and carcinogenesis. We have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN), and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM) models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate. To further define the role of 15-LO-1 in prostate carcinogenesis, we established a novel GEM model with targeted overexpression of h15-LO-1 in the prostate [human fifteen lipoxygenase-1 in mouse prostate (FLiMP)]. We used a Cre- mediated and a loxP-mediated recombination strategy to target h15-LO-1 specifically to the prostate of C57BL/6 mice. Wild-type (wt), FLiMP+/-, and FLiMP+/+ mice aged 7 to 21, 24 to 28, and 35 weeks were characterized by histopathology, immunohistochemistry (IHC), and DNA/RNA and enzyme analyses. Compared to wt mice, h15-LO-1 enzyme activity was increased similarly in both homozygous FLiMP+/+ and hemizygous FLiMP+/- prostates. Dorsolateral and ventral prostates of FLiMP mice showed focal and progressive epithelial hyperplasia with nuclear atypia, indicative of the definition of mouse prostatic intraepithelial neoplasia (mPIN) according to the National Cancer Institute. These foci showed increased proliferation by Ki-67 IHC. No progression to invasive PCa was noted up to 35 weeks. By IHC, h15-LO-1 expression was limited to luminal epithelial cells, with increased expression in mPIN foci (similar to human HGPIN). In summary, targeted overexpression of h15-LO-1 (a gene overexpressed in human PCa and HGPIN) to mouse prostate is sufficient to promote epithelial proliferation and mPIN development. These results support 15-LO-1 as having a role in prostate tumor initiation and as an early target for dietary or other prevention strategies. The FLiMP mouse model should also be useful in crosses with other GEM models to further define the combinations of molecular alterations necessary for PCa progression.