The first and protective group-free total synthesis of (±)-yezo'otogirin C has been achieved from 3-methyl-4-prenylcyclohex-2-enone in eight steps with 23% overall yield. The tricyclic core of (±)-yezo'otogirin C was established via a bioinspired oxidative cascade cyclization strategy using Mn(II)/Mn(III) and O2, followed by reduction of the peroxy-bridged intermediate using thiourea in refluxing methanol.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Nasopharyngeal carcinoma (NPC) is one of the most common malignant cancers in Southeast Asia and Southern China. Centipeda minima extract (CME) had previously demonstrated anti-cancer effects in human NPC. Brevilin A, a sesquiterpene lactone isolated from C. minima, has been reported to exhibit biological activities. In this study, we investigated its anti-NPC effect and further explored its molecular mechanisms. The effects of brevilin A were tested in the NPC cell lines CNE-1, CNE-2, SUNE-1, HONE1, and C666-1. Effects of brevilin A on cell viability were determined by MTT assay, and cell cycle and apoptosis were detected by flow cytometry. The molecular mechanism of cell cycle regulation and apoptosis were investigated via Western blot. Results showed that brevilin A inhibited NPC cell viability in a concentration- and time-dependent manner. Brevilin A induced cell cycle arrest at G2/M and induced apoptosis. Western blot results demonstrated that brevilin A could down-regulate cyclin D3, cdc2, p-PI3K, p-AKT, p-mTOR, and p-STAT3, while up-regulating cleaved PARP, cleaved caspase 9, and Bax. Regulation of cyclin B1, cdk6, and Bcl-2 expression by brevilin A showed dynamic changes according to dose and time. In the tumor xenograft model, brevilin A could reduce tumor growth, at a similar magnitude to cisplatin. However, notably, whereas cisplatin treatment led to significant weight loss in treated mice, treatment with brevilin A did not, indicating its relative lack of toxicity. Taken together, brevilin A regulated cell cycle, activated the caspase signaling pathway, and inhibited PI3K/AKT/mTOR and STAT3 signaling pathways in vitro, and exhibited similar efficacy to the common chemotherapeutic cisplatin in vivo, without its associated toxicity. These findings provide a framework for the preclinical development of brevilin A as a chemotherapeutic for NPC.
A mild and efficient dual-mode Lewis acid induced Diels-Alder (DA)/carbocyclization cascade cyclization reaction has been developed for construction of the tricyclic core of ent-kaurenoids in one pot with the aid of a theoretical study on the π,σ-Lewis acidities of a variety of Lewis acids. With ZnBr2 as the dual-mode Lewis acid, a series of substituted enones and dienes underwent DA/carbocyclization cascade cyclization reaction smoothly at room temperature and provided the tricyclic cyclized products in one pot with good yields and high diastereoselectivity. The tricyclic cyclized product has been successfully utilized as a common intermediate for formal syntheses of (±)-platensimycin and (±)-platencin.
Abstract The total synthesis of the title compound is achieved from 3‐methyl‐4‐prenylcyclohex‐2‐one in eight steps with 23% overall yield without the need of protecting groups, for the first time.