Abstract Neutron monitors continuously record the hadronic part of secondary atmospheric radiation on the ground, which originates from primary cosmic rays. In Thailand, we developed a mobile neutron monitor housed inside a standard-size shipping container named “Changvan.” It contains three neutron-sensitive proportional counters set up in the typical NM64 layout. However, the central counter doesn’t have the lead producer, leading us to refer to it as a “semi-leaded” neutron monitor. We examined cosmic ray spectral variations on two latitude surveys during 2018-2019 and 2019-2020. This work examines the ratio of count rates between leaded and unleaded setups, which shows notable variation based on geomagnetic cutoff rigidity, suggesting a sensitivity to the cosmic ray spectrum. This measurement could be implemented at stationary stations. The unleaded counter, shielded by the reflector with a higher count from nearby lead, may have advantages over a bare one. Furthermore, we explore alternative techniques to identify spectral changes in Galactic cosmic rays using Changvan data. We analyze using time delay histograms to determine the leader fraction ( L ) of neutrons that are not preceded by another neutron from the same primary cosmic ray. We also examine other parameters, including the alpha ( α ) parameter and pulse rate ( PR ), which can be compared with count rates ( CR ). Our findings indicate that the ratios of L and α are not significantly affected by geomagnetic cutoff rigidity. In contrast, CR and PR exhibit significant dependency and show opposite trends.
The highest energy gamma-rays from gamma-ray bursts (GRBs) have important implications for their radiation mechanism. Here we report for the first time the detection of gamma-rays up to 13 TeV from the brightest GRB 221009A by the Large High Altitude Air-shower Observatory (LHAASO). The LHAASO-KM2A detector registered more than 140 gamma-rays with energies above 3 TeV during 230$-$900s after the trigger. The intrinsic energy spectrum of gamma-rays can be described by a power-law after correcting for extragalactic background light (EBL) absorption. Such a hard spectrum challenges the synchrotron self-Compton (SSC) scenario of relativistic electrons for the afterglow emission above several TeV. Observations of gamma-rays up to 13 TeV from a source with a measured redshift of z=0.151 hints more transparency in intergalactic space than previously expected. Alternatively, one may invoke new physics such as Lorentz Invariance Violation (LIV) or an axion origin of very high energy (VHE) signals.
Abstract Neutron monitors of standard design (IGY or NM64) are employed worldwide to study variations in the flux of galactic cosmic rays and solar energetic particles in the GeV range. The design minimizes detector response to neutrons below ∼10 MeV produced by cosmic ray interactions in the ambient medium. Increasingly, however, such neutrons are of interest as a means of obtaining spectral information on cosmic rays, for studies of soil moisture, and for nuclear threat detection. Bare neutron counters, a type of lead‐free neutron monitor, can detect such neutrons, but comparatively little work has been done to characterize the dependence of their count rate on cutoff rigidity. We analyze data from three bare neutron counters operated on a ship together with a three‐tube NM64 monitor from November 1995 to March 1996 over a wide range of magnetic latitude, that is, a latitude survey. The bare counter design used foamed‐in‐place polyurethane insulation to keep the temperature uniform and to some extent moderate high‐energy neutrons. When the ship was near land, the bare/NM64 count rate ratio was dramatically higher. Considering only data from open sea, the bare and NM64 pressure coefficients are not significantly different. We determine the response function of these bare counters, which is weighted to Galactic cosmic rays of lower energy than the NM64. This measurement of the response function may improve determination of the spectral index of solar energetic particles and Galactic cosmic rays from a comparison of bare and NM64 count rates.
We had investigated the efficacy of FLUKA Monte Carlo code for the gamma radiation shielding parameter calculation of (60-x) PbO-xLi2O-40 B2O3 glasses (where 0 ≤ x ≤ 25 mol%) at photon energies, 356, 662, 1173, and 1332 keV. Then we compared the mass attenuation coefficients, mean free path, effective atomic number, and electron density to standard XCOM data and experimental results from recently published work. We found that simulated and calculated results agreed well with those published results, for which the maximum relative deviation is less than 1.5 % for all the glass samples.
We examine the accuracy of a common technique for estimating the start time of solar energetic particle injection based on a linear fit to the observed onset time versus 1/(particle velocity). This is based on a concept that the first arriving particles move directly along the magnetic field with no scattering. We check this by performing numerical simulations of the transport of solar protons between 2 and 2000 MeV from the Sun to the Earth, for several assumptions regarding interplanetary scattering and the duration of particle injection, and by analyzing the results using the inverse velocity fit. We find that, in most cases, the onset times align close to a straight line as a function of inverse velocity. Despite this, the estimated injection time can be in error by several minutes. Also, the estimated path length can deviate greatly from the actual path length along the interplanetary magnetic field. The major difference between the estimated and actual path lengths implies that the first arriving particles cannot be viewed as moving directly along the interplanetary magnetic field.
Abstract Solar modulation refers to Galactic cosmic-ray variations with the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle and is relevant to the space radiation environment and effects on Earth’s atmosphere. Its complicated dependence on solar and heliospheric conditions is only roughly understood and has been empirically modeled in terms of a single modulation parameter. Most analyses of solar modulation use neutron monitor (NM) data from locations with relatively low geomagnetic cutoff rigidity, i.e., the threshold for cosmic rays to penetrate Earth’s magnetic field. The Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, has the world’s highest cutoff rigidity (≈17 GV) where observations span a complete solar modulation cycle (since late 2007). The pattern of solar modulation at Doi Inthanon during 2011–2014 was qualitatively very different from that at a low geomagnetic cutoff and is not well described by the same modulation parameter. At other times, NM count rates from Doi Inthanon and McMurdo, Antarctica (cutoff ∼1 GV), were linearly correlated and confirm the observation from latitude surveys in the previous solar cycle that the slope of the correlation changes with solar magnetic polarity. Low solar magnetic tilt angles (<40° at negative polarity) were well correlated with variations at both NM stations, as predicted by drift models. At a higher tilt angle, the Doi Inthanon count rate is well correlated with the interplanetary magnetic field, which is consistent with an increase in diffusion at high rigidity short-circuiting the effects of drifts and the heliospheric current sheet.