Abstract. We identify and map visible traces of subglacial meltwater drainage around the former Keewatin Ice Divide, Canada, from high-resolution Arctic Digital Elevation Model (ArcticDEM) data. We find similarities in the characteristics and spatial locations of landforms traditionally treated separately (i.e. meltwater channels, meltwater tracks and eskers) and propose that creating an integrated map of meltwater routes captures a more holistic picture of the large-scale drainage in this area. We propose the grouping of meltwater channels and meltwater tracks under the term meltwater corridor and suggest that these features in the order of 10s–100s m wide, commonly surrounding eskers and transitioning along flow between different types, represent the interaction between a central conduit (the esker) and surrounding hydraulically connected distributed drainage system (the meltwater corridor). Our proposed model is based on contemporary observations and modelling which suggest that connections between conduits and the surrounding distributed drainage system within the ablation zone occur as a result of overpressurisation of the conduit. The widespread aerial coverage of meltwater corridors (5 %–36 % of the bed) provides constraints on the extent of basal uncoupling induced by basal water pressure fluctuations. Geomorphic work resulting from repeated connection to the surrounding hydraulically connected distributed drainage system suggests that basal sediment can be widely accessed and evacuated by meltwater.
Ice low-switching, which can involve changes in ice flow velocity and direction, is crucial to a full understanding of ice masses and their response to climate change. A topographically controlled ice flow switch near a glacier margin was recently documented at Breiðamerkurjökull, southeast Iceland, where the central flow unit migrated eastward in response to variations in subglacial topography and the influence of Jökulsárlón glacial lagoon. This site provides an opportunity to study the geomorphic response to ice-margin reconfiguration. Investigating contemporary processes can offer valuable insights into analogous landforms created during the deglaciation of palaeo-ice sheets. The landform assemblage and topographic setting of our Icelandic study site is compared to a palaeo-example from Alberta, Canada, which was once covered by the Laurentide ice sheet. Uncrewed aerial vehicle-(UAV) derived data was used to assess the geomorphic response to this switching and related processes across a 1.5 km2 area of the central flow unit which deglaciated between 2010 and 2023. From 2010 to 2017, the landscape featured streamlined subglacial material, a stable subglacial esker system and proglacial lakes (Landsystem A), shifting to a spillway-dominated system between 2018 and 2023 (Landsystem B). Since 2018 the glacier has been retreating across a reverse slope bed, resulting in the formation of quasi-annual ice-marginal spillways. Meltwater impoundment at the ice margin, formed ice-contact lakes which eventually initiated ice-margin parallel spillways draining proglacial meltwater along the local land-surface gradient, towards Jökulsárlón. As the ice retreats, an ice-contact lake forms again at the new margin and initiates the erosion of the next ice-marginal spillway. The geomorphological signature demonstrates how subglacial topography and ice-flow switching can significantly influence ice and meltwater dynamics. Since the glacier flow-switch, part of the central unit is now lake-terminating with areas of the margin evolving into a stagnant system, as it is now cut off from the accumulation centre. Therefore, Landsystem B could be analogous to regions of ice stream shut down and where ice masses retreated across reverse slope beds. For example, the Pakowki Lake region of Southeastern Alberta displays a similar landform assemblage and is presented as a palaeo-example in this work. Such insights are important for assessing the efficacy of numerical models in reconstructing the finer scale dynamics of past ice sheets during retreat.
Eskers record the signature of channelised meltwater drainage during deglaciation providing vital information on the nature and evolution of subglacial drainage. In this paper, we compare the spatial pattern of eskers beneath the former Laurentide Ice Sheet with subglacial drainage routes diagnosed at discrete time intervals from the results of a numerical ice-sheet model. Perhaps surprisingly, we show that eskers predominantly occur in regions where modelled subglacial water flow is low. Eskers and modelled subglacial drainage routes were found to typically match over distances of < 10 km, and most eskers show a better agreement with the routes close to the ice margin just prior to deglaciation. This supports a time-transgressive esker pattern, with formation in short (< 10 km) segments of conduit close behind a retreating ice margin, and probably associated with thin, stagnant or sluggish ice. Esker-forming conduits were probably dominated by supraglacially fed meltwater inputs. We also show that modelled subglacial drainage routes containing the largest concentrations of meltwater show a close correlation with palaeo-ice stream locations. The paucity of eskers along the terrestrial portion of these palaeo-ice streams and meltwater routes is probably because of the prevalence of distributed drainage and the high erosion potential of fast-flowing ice.
Abstract. We identify and map chains of esker beads (series of aligned mounds) up to 15 m high and on average ~ 65 m wide across central Nunavut, Canada from the high-resolution (2 m) ArcticDEM. Based on the close one-to-one association with regularly spaced, sharp crested ridges interpreted as De Geer moraines, we interpret the esker beads to be quasi-annual ice-marginal deposits formed time-transgressively at the mouth of subglacial conduits during deglaciation. Esker beads therefore preserve a high-resolution record of ice-margin retreat and subglacial hydrology. The well-organised beaded esker network implies that subglacial channelised drainage was relatively fixed in space and through time. Downstream esker bead spacing constrains the typical pace of deglaciation in central Nunavut between 7.2 and 6 ka 14C BP to 165–370 m yr−1, although with short periods of more rapid retreat (> 400 m yr−1). Under our time-transgressive interpretation, the lateral spacing of the observed eskers provides a true measure of subglacial conduit spacing for testing mathematical models of subglacial hydrology. Esker beads also record the volume of sediment deposited in each melt season, thus providing a minimum bound on annual sediment fluxes, which is in the range of 103–104 m3 yr−1 in each 6–10 km wide subglacial conduit catchment. We suggest the prevalence of esker beads across this predominantly marine terminating sector of the former Laurentide Ice Sheet is a result of sediment fluxes that were unable to backfill conduits at a rate faster than ice-margin retreat. Esker ridges, conversely, are hypothesised to form when sediment backfilling of the subglacial conduit outpaced retreat resulting in headward esker growth close to but behind the margin. The implication, in accordance with recent modelling results, is that eskers in general record a composite signature of ice-marginal drainage rather than a temporal snapshot of ice-sheet wide subglacial drainage.
Eskers are useful for reconstructing meltwater drainage systems of glaciers and ice sheets. However, our process understanding of eskers suffers from a disconnect between sporadic detailed morpho-sedimentary investigations of abundant large-scale ancient esker systems, and a small number of modern analogues where esker formation has been observed. This paper presents the results of detailed field and high-resolution remote sensing studies into two esker systems that have recently emerged at Hørbyebreen, Svalbard, and one at Breiðamerkurjökull, Iceland. Despite the different glaciological settings (polythermal valley glacier versus active temperate piedmont lobe), in all cases a distinctive planform morphology has developed, where ridges are orientated in two dominant directions corresponding to the direction of ice flow and the shape of the ice margin. These two orientations in combination form a cross-cutting and locally rectilinear pattern. One set of ridges at Hørbyebreen is a hybrid of eskers and geometric ridges formed during a surge and/or jökulhlaup event. The other sets of ridges are eskers formed time-transgressively at a retreating ice margin. The similar morphology of esker complexes formed in different ways on both glacier forelands implies equifinality, meaning that care should be taken when interpreting Quaternary esker patterns. The eskers at Hørbyebreen contain substantial ice cores with a high ice:sediment ratio, suggesting that they would be unlikely to survive after ice melt. The Breiðamerkurjökull eskers emerged from terrain characterised by buried ice which has melted out. Our observations lead us to conclude that eskers may reflect a wide range of processes at dynamic ice margins, including significant paraglacial adjustments. This work, as well as previous studies, confirm that constraints on esker morphology include: topographic setting (e.g. confined valley or broad plain); sediment and meltwater availability (including surges and jökulhlaups); position of formation (supraglacial, englacial or subglacial); and ice-marginal dynamics such as channel abandonment, the formation of outwash heads or the burial and/or exhumation of dead ice.
Mars’ present climate is extremely cold and arid. Until recently, it was widely thought that debris-covered glaciers in Mars’ mid-latitudes have been pervasively cold-based since their formation 10s–100s Myr ago. However, we recently discovered eskers associated with ~110–150 Myr old glaciers in the Phlegra Montes [1] and NW Tempe Terra [2] regions of Mars’ northern mid-latitudes. Eskers are sinuous ridges comprising sediments deposited in glacial meltwater conduits. Therefore, eskers associated with existing mid-latitude glaciers on Mars indicate that localised wet-based glaciation did occur during Mars’ most recent geological period. Eskers are important tools for reconstructing the nature, extent, and dynamics of wet-based glaciation on Earth, and have similar potential for Mars.
We used 1–2 m/pixel resolution digital elevation models derived from 25–50 cm/pixel High Resolution Imaging Science Experiment stereo-pair images to measure the planform and 3D morphometries of the Phlegra Montes and NW Tempe Terra eskers, and compare them with the morphometries of Quaternary-aged eskers in Canada [3] and SW Finland [4]. We found that the Martian eskers have remarkably similar lengths, sinuosities and heights to terrestrial eskers, but that the Martian eskers are typically wider and have lower side slopes. Large width-height ratios of the Martian eskers are consistent with our previous measurements of ancient (~3.5 Ga) eskers close to Mars’ south pole [5], and may arise from differences in either: esker degradation state, or fundamental glacio-hydrological controls on esker formation between Mars and Earth. Portions of the two Martian eskers with comparable crest morphologies (e.g., sharp- or round-crested) have similar width-height relationships, suggesting that glacio-hydrological processes may exert controls upon the observed relationships between esker morphology and morphometry.
Our morphometric analyses also reveal that the Martian esker in NW Tempe Terra has a ‘stacked’ morphology: the crest of a wide, round-crested underlying ridge is superposed by a narrow, sharp- to multi-crested ridge. Based on morpho-sedimentary relationships observed along terrestrial eskers [6], we interpret this transition to represent waning sediment supply and meltwater discharge towards the end of the esker-forming drainage episode(s). Direct sedimentary insights into Martian eskers are not yet possible so we emphasise that such inferences should be rigorously grounded in observations of analogous landforms on Earth.
This work was funded by STFC grant ST/N50421X/1.
References: [1] Gallagher, C., and Balme, M.R., (2015), Earth. Planet. Sci. Lett. 431, 96-109,
[2] Butcher, F.E.G., et al. (2017), J. Geophys. Res. Planets. 122(12), 2445-2468,
[3] Storrar, R.D., et al. (2014) Quat. Sci. Rev. 105, 1-25,
[4] Storrar, R.D., and Jones, A., Unpublished,
[5] Butcher, F.E.G., et al. (2016), Icarus 275, 65-84,
[6] Burke, M.J., et al. (2010) Geol. Soc. Am. Bull. 122, 1637-1645.
We present a systematic, metre-scale characterisation of the 3D morphometry of an esker on Mars, and the first attempt to reconstruct the multi-stage dynamics of esker formation on Mars. Eskers are sinuous ridges comprising sediment deposited by meltwater draining through ice-confined tunnels within or beneath glaciers. Detailed morphometric insights into eskers on Mars are important for (i) informing morphometric tests of whether sinuous ridges elsewhere on Mars are eskers, and (ii) informing modelling experiments which aim to reconstruct the glaciological and environmental controls on esker formation on Mars. We use a digital elevation model generated from High Resolution Imaging Science Experiment (HiRISE) images to characterise the height and width of an extremely rare esker associated with a late-Amazonian-aged viscous flow feature (debris-covered glacier) in NW Tempe Terra, Mars. Our measurements suggest that the NW Tempe Terra esker is a 'stacked' formation comprising an underlying 'lower member' ridge that is superposed by a narrower 'upper member' ridge. We used a novel morphometric approach to test whether the apparent stacking records two distinct esker deposition regimes (either within the same drainage episode, or within temporally-separated drainage episodes). This approach posits that esker crest morphology is controlled by primary esker formation processes and, by extension, that portions of eskers with similar crest morphologies should have similar morphometric relationships. We predicted the morphometric relationships described by the constituent upper and lower member ridges based on 'reference relationships' observed for morphologically-similar portions of the esker where no evidence of stacking was observed. Our observations corresponded well with the predicted relationships, supporting our stacked esker hypothesis. We propose conceptual models, which invoke spatial and temporal variations in sediment supply and meltwater discharge, to explain the stacked morphology. These models are informed by morpho-sedimentary relationships observed along eskers on Earth.
An abstract is not available for this content. As you have access to this content, full HTML content is provided on this page. A PDF of this content is also available in through the 'Save PDF' action button.