Low-intensity pulsed ultrasound (LIPUS) can induce mesenchymal stem cell (MSC) differentiation, although the mechanism of its potential effects on chondrogenic differentiation is unknown. Since autophagy is known to regulate the differentiation of MSCs, the aim of our study was to determine whether LIPUS induced chondrogenesis via autophagy regulation. MSCs were isolated from the rat bone marrow, cultured in either standard or chondrogenic medium, and stimulated with 3 MHz of LIPUS given in 20% on–off cycles, with or without prior addition of an autophagy inhibitor or agonist. Chondrogenesis was evaluated on the basis of aggrecan (AGG) organization and the amount of type II collagen (COL2) and the mRNA expression of AGG, COL2, and SRY-related high mobility group-box gene 9 (SOX9) genes. LIPUS promoted the chondrogenic differentiation of MSCs, as shown by the changes in the extracellular matrix (ECM) proteins and upregulation of chondrogenic genes, and these effects were respectively augmented and inhibited by the autophagy inhibitor and agonist. Taken together, these results indicate that LIPUS promotes MSC chondrogenesis by inhibiting autophagy.
From metabolic waste to biological mediators, exosomes have emerged as the key player in a variety of pathological processes, particularly in oncogenesis. The exosome-mediated communication network involves nearly every step of cancer progression, promoting the proliferation and immune escape of cancer cells. Therefore, the removal of cancer-derived exosomes has profound clinical significance. Current methods for exosome separation and enrichment are either for large-scale samples or require complex pretreatment processes, lacking effective methods for trace-volume exosome capture in situ. Herein, we have developed an in situ exosome capturing and counting device based on the antibody-functionalized capillary. Specific antibodies targeting exosome biomarkers were immobilized to the inner wall of the capillary via biotin-streptavidin interaction for direct cancer exosome capturing. Subsequent exosome staining enabled imaging and enumeration. Acceptable linearity and reproducibility were achieved with our device, with the capturing and detective range between 3.3 × 104 and 3.3 × 108 particles, surpassing the nanoparticle tracking analysis by 2 orders of magnitude while requiring merely 30 μL sample. We demonstrated that MCF-7-derived exosomes induced epithelial-mesenchymal transition of epithelial cells MCF-10A, and our method was able to completely or partially reverse the transition by complete depletion or specific depletion of cancer exosomes without any preprocessing. Moreover, both whole exosomes and cancer-specific exosomes alone from mimic blood samples were successfully captured and counted, without obvious non-specific adsorption. In all, our approach realized the in situ depletion and number-counting of cancer-derived exosomes directly from the complex humoral environment, having the potential to provide a comprehensive tumor therapeutic and prognosis evaluation tool by targeted hemodialysis and counting of tumor-derived exosomes.
In recent MS-based glycoproteomics, the selective enrichment of glycopeptides from complex biological samples is essential. In this work, for the first time, a novel ultra hydrophilic dendrimer-modified magnetic graphene@polydopamine@poly(amidoamine) (magG@PDA@PAMAM) was synthesized via three simple and rapid steps. The magnetic composites combined large surface of graphene, strong magnetic responsiveness of Fe3O4 with double hydrophilic abilities of PDA and PAMAM. Especially PAMAM had long dendritic chains and abundant amino groups. When it was grafted onto magG@PDA, it strongly enhanced the hydrophilic properties of the magnetic composites. The PAMAM-functionalized magnetic composites were employed in the enrichment of glycopeptides, 15 glycopeptides from horseradish peroxidase (HRP) digestion were identified and the limit of detection was as low as 1 fmol μL-1. Also, it showed a good selectivity when the background nonglycopeptides had a concentration 100 fold higher than the target glycopeptides. All the results proved that magG@PDA@PAMAM has great potential in the glycoproteome analysis of complex biological samples.
Ultra-low-copy number proteins play a crucial role in exploring cellular heterogeneity and the insight of protein biomarkers in a single cell. However, counting ultra-low-copy number target proteins in a single cell remains a grand challenge. Herein, we developed a so-called single-cell picoliter liquid operating technology for counting target proteins in a single cell. An ingenious volume-controllable sampling technique was employed to capture a single cell for subsequent analysis. Remarkably, 50 pL of sample volume was employed for sample preparation, single-cell capture, in-droplet lysis, and target protein immobilization on a functionalized coverslip in a monolayer. Then, target protein antibodies coupled with quantum dots were added and incubated to label those immobilized proteins. After clean-up, a single-view image under 100× objective was taken, and the 80 × 80 μm2 view image was then applied to count the precise copy number of the target proteins in the single cell. Furthermore, good linearity and repeatability were achieved for ultra-low-copy number proteins, ranging from 1 to 1500. Finally, the expression level of human epidermal growth factor receptor 2 in single cells from both MCF-7 and MDA-MB-231 cell lines was also analyzed. In a word, this work stimulated the development of capillary-based single-cell analysis and updated the connotation of counting ultra-low-copy number proteins.
A novel MOFs-303-functionalized magnetic probe with strong hydrophilicity was synthesized for the highly efficient analysis of N-linked glycopeptides and the discovery of potential biomarkers with hepatocellular carcinoma.