Abstract Atomically thin graphene is a transparent, highly electrically and thermally conductive, light-weight, and the strongest material. To date, graphene has found applications in many aspects including transport, medicine, electronics, energy, defense, and desalination. We demonstrate another disruptive application of graphene in the field of laser-ion acceleration, in which the unique features of graphene play indispensable role. Laser driven ion sources have been widely investigated for pure science, plasma diagnostics, medical and engineering applications. Recent developments of laser technologies allow us to access radiation regime of laser ion acceleration with relatively thin targets. However, the thinner target is the less durable and can be easily broken by the pedestal or prepulse through impact and heating prior to the main laser arrival. One of the solutions to avoid this is plasma mirror, which is a surface plasma created by the foot of the laser pulse on an optically transparent material working as an effective mirror only for the main laser peak. So far diamond like carbon (DLC) is used to explore the ion acceleration in extremely thin target regime (< 10 nm) with plasma mirrors, and it is necessary to use plasma mirrors even in moderately thin target regime (10-100 nm) to realize energetic ion generation. However, firstly DLC is not 2D material, and therefore, it is very expensive to make it thin and flat. Moreover, graphene is stronger than diamond at extremely thin regime, and much more reasonable for mass-production. Furthermore, installing and operating plasma mirrors at high repetition rate is also costly. Here we show another direct solution using graphene as the thinnest and strongest target ever made. We develop a facile transfer method to fabricate large-area suspended graphene (LSG) as target for laser ion acceleration with precision down to a single atomic layer. Direct irradiation of the LSG targets with an ultra intense laser generates energetic carbons and protons evidently showing the durability of graphene without plasma mirror. This extends the new frontier of science on graphene under extreme electromagnetic field, such as energy frontier and nuclear fusion.
Self-assembled monolayer (SAM)-functionalized substrates are widely used for tailoring the electronic properties (i.e., p- and n-type doping) of two-dimensional materials, which might suppress the charge scattering, impurities, and wrinkles that can severely decline electrical properties. The fluorinated self-assembled monolayer (FSAM) is also used for promoting electrical properties by eliminating the small number of water molecules/residues between the substrate and graphene during the typical wet transfer process. However, taking graphene as an example, most of the graphene/SAM or graphene/FSAM studies are focused on the enhancement of their electrical properties and lack investigation on their surface morphology after transfer and the correlation between them. Herein, a strategy is discovered in which FSAM-modified substrates help construct a wrinkle-free graphene film with the dry transfer process due to the low surface energy between the graphene and FSAM. Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FDTS) was selected as a precursor toward the formation of the monolayer and highly uniform FSAM using a facile dip-coating route, which is feasible on versatile substrates such as Si, SiO2/Si, and poly(ethylene terephthalate) (PET). The surface roughness of the FSAM-modified SiO2 substrate reduces from 2.98 to 0.13 nm. Therefore, the lower surface energy (from 60.80 to 8.12 mN/m) was found to enhance the carrier mobility of the transferred graphene by about 1.77 times, increasing from 894.6 to 1588 cm2/(V·s). Furthermore, a top-gated field-effect transistor based on graphene/FSAM was fabricated and characterized in which the FSAM decouples from the strong substrate interference and significantly improved the field-effect mobility by up to 17 times compared to that of graphene without substrate modification. Thus, this work provides a facile strategy to avoid wrinkle defects and suppress charge scattering through the decoupling from the substrate, which could be applied to other two-dimensional (2D) materials for improving their electrical performance on transistors and flexible electronics.
The aim of this study was to realize the oral delivery of SAK-HV protein and improve its oral bioavailability based on chitosan quaternary ammonium salt-PLGA microsphere. The results showed that the SAK-HV-loaded microsphere can overcome the multiple obstacles for oral adsorption and adhere effectively to the jejunal segment of a rat. The pharmacokinetic analysis of the oral drug-loaded microspheres in rats showed that the blood drug concentration of SAK-HV reached the peak value at 4 h after oral administration, and the relative oral bioavailability of SAK-HV was 3.4%. Additionally, after oral administration to the mice, a higher level of antibody against SAK-HV was produced on day 21 compared with that in the control and injection groups, and the antibody titre was 7.2 times that of the tail vein group. This work suggests that the microsphere of the chitosan quaternary ammonium salt-PLGA may be a promising drug delivery system for the oral administration of SAK-HV protein.
III-nitride semiconductors, GaN, in particular, had played an important role in optoelectronic and electronic devices through the advancement of heteroepitaxy. These heteroepitaxy processes have been well established on single-crystalline substrates, such as Si, SiC, and sapphire. However, the mismatch between GaN and these substrates in lattice constant as well as thermal expansion coefficient imposes the limit on device performance and reliability. The search for a better substrate still continues. Here, we report the heteroepitaxy of III-nitride semiconductors on polycrystalline and amorphous substrates using a layered two-dimensional material as a buffer and seed layer. The two-dimensional material on a polycrystalline or amorphous substrate mitigates the lattice mismatch conditions, and shields the random oriented atomic registry of polycrystalline or amorphous substrates to promote single-crystalline hetroepitaxy of III-nitrides without any requisites from the substrate itself.
In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 10(5), which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (∼55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra-large suspended graphene retains the intrinsic features of graphene, including phonon response and an enhanced carrier mobility (200% higher than that of graphene on a substrate). The highly elastic mechanical properties of the graphene membrane are demonstrated, and the Q-factor under 2 MHz stimulation is measured to be 200-300. A graphene-based capacitive pressure sensor is fabricated, where it shows a linear response and a high sensitivity of 15.15 aF Pa(-1), which is 770% higher than that of frequently used silicon-based membranes. The reported approach is universal, which could be employed to fabricate other suspended 2D materials with macro-scale sizes on versatile support substrates, such as arrays of Si nano-pillars and deep trenches.
Oral delivery is the most common method of drug administration with high safety and good compliance for patients. However, delivering therapeutic proteins to the target site via oral route involves tremendous challenge due to unfavourable conditions like biochemical barrier, mucus barrier and epithelial barriers. According to the functional differences of various protein drug delivery systems, the recent advances in pH responsive polymer-based drug delivery system, mucoadhesive polymer-based drug delivery system, absorption enhancers-based drug delivery system and composite polymer-based delivery system all were briefly summarised in this review, which not only clarified the clinic potential of these novel drug delivery systems, but also described the way for increasing oral bioavailability of therapeutic protein.