This study focused on the development of a method for the rapid detection of acid-neutralising adulterants in raw milk using a milk composition analyser. Qualitative analysis for the discrimination of different acid-neutralising acid adulterants in raw milk and quantification of NaSCN in adulterated raw milk were conducted, combined with chemometrics. The results showed that the milk component analyser combined with principal component analysis (PCA) could judge whether raw milk samples were adulterated but cannot identify the types of adulterated substances. Although partial least squares discrimination analysis (PLS-DA) can distinguish some adulterated raw milk samples, the accuracy rate was only 56.3%; the random forest (RF) model could recognise most adulterated raw milk samples with an accuracy rate of 97.5% and the F1-score was 0.9638. In the prediction model of NaSCN adulteration concentration in raw milk constructed by RF, the coefficient of determination (R2) was 0.9889, and the root means square error (RMSE) was 3.28 × 10−4, suggesting a high prediction performance of the model. The effectiveness of the method for the detection of real samples in practical production was also proved. Based on the above results, it could conclude that the milk component analyser, combined with chemometrics, effectively distinguished acid-neutralising adulterants in raw milk. These findings provide a reference for the rapid detection of adulterants and the quality control of raw milk.
Despite intensive analyses of yogurt flavor, the synergistic effects of the key aroma compounds on sensory responses and their optimum concentration ranges remain less well-documented. This study investigated the odor thresholds, optimum concentration ranges, and perceptual actions of diacetyl, acetaldehyde, and acetoin in a yogurt matrix. Our results show that the odor thresholds of diacetyl, acetaldehyde, and acetoin in the yogurt matrix were 5.43, 15.4, and 29.0 mg/L, respectively, which were significantly higher than the corresponding values in water. The optimum diacetyl, acetaldehyde, and acetoin concentration ranges were found to be 6.65 to 9.12, 25.9 to 35.5, and 37.3 to 49.9 mg/L, respectively. In Feller's additive model, the addition of each compound led to a significant reduction in their odor threshold in the yogurt matrix, thus demonstrating the synergistic effects of the compounds. In the σ-τ plot, various concentrations of compounds were associated with various degrees of additive behavior with respect to the aroma intensity of the yogurt matrix, thus demonstrating the synergism among these compounds in increasing the overall aroma intensity. The optimal simultaneous concentration ratio of diacetyl:acetaldehyde:acetoin was determined to be 4.00:16.0:32.0 mg/L. The specific synergistic effects were also confirmed by an electronic nose analysis and aroma profile comparison. In summary, these 3 aroma compounds exhibited synergistic effects in a yogurt matrix, thus providing a theoretical basis for the enhancement of flavors in dairy products.
To achieve rapid on-site identification of raw milk adulteration and simultaneously quantify the levels of various adulterants, we combined Raman spectroscopy with chemometrics to detect 3 of the most common adulterants. Raw milk was artificially adulterated with maltodextrin (0.5-15.0%; wt/wt), sodium carbonate (10-100 mg/kg), or whey (1.0-20.0%; wt/wt). Partial least square discriminant analysis (PLS-DA) classification and a partial least square (PLS) regression model were established using Raman spectra of 144 samples, among which 108 samples were used for training and 36 were used for validation. A model with excellent performance was obtained by spectral preprocessing with first derivative, and variable selection optimization with variable importance in the projection. The classification accuracy of the PLS-DA model was 95.83% for maltodextrin, 100% for sodium carbonate, 95.84% for whey, and 92.25% for pure raw milk. The PLS model had a detection limit of 1.46% for maltodextrin, 4.38 mg/kg for sodium carbonate, and 2.64% for whey. These results suggested that Raman spectroscopy combined with PLS-DA and PLS model can rapidly and efficiently detect adulterants of maltodextrin, sodium carbonate, and whey in raw milk.
A systematic flavoromics-based analysis of samples of 12 commercially available Gouda cheeses was performed to determine their key volatile components, the contribution of these components to the aromas of the cheeses, and which aromas were preferred by a panel of Chinese consumers. The sensory analysis results show that the Chinese consumers preferred young and medium cheeses, and that sensory attributes such as 'milk' and 'cream' were the most popular. Seventy-seven aroma compounds were identified by gas chromatography-mass spectrometry, and 28 of these were determined to be aroma-active compounds by gas chromatography-olfactometry analysis and calculation of their odour activity values. Partial least-squares analysis revealed that compounds such as diacetyl and acetoin correlated with aromas preferred by the Chinese consumers, while isobutyric acid, hexanoic acid and valeric acid correlated with aromas disliked by the Chinese consumers. Finally, the flavour contribution of each aroma-active compound was validated through aroma reorganisation and omission experiments.
The development of yogurt flavor is a complicated and dynamic biochemical process. In addition to traditional starter cultures, adjunct cultures could also make significant contributions to the flavor profiles of yogurt. In the current study, two Lactobacillus plantarum strains (1-33 and 1-34) were isolated based on their abilities to produce acetaldehyde and diacetyl. In co-fermentation with traditional starters, these isolated strains were able to maintain viability without affecting the yogurt's acidification profiles. Furthermore, they positively influenced the aroma quality of the yogurt samples. They promoted the formation of volatile metabolites, especially acetaldehyde, diacetyl, and acetoin, which are recognized as characteristic compounds. The results of this work provide novel knowledge about the contributions of isolated strains on the flavor profiles of yogurt, which will help to improve the organoleptic properties of the final products. PRACTICAL APPLICATIONS: Using lactic acid bacteria (LAB) as adjunct cultures co-fermented with traditional yogurt starter cultures can increase the quantities of flavor compounds in yogurt. This study enriches our understanding of the effects of adjunct cultures on yogurt flavor. Researchers and manufacturers that specialize in yogurt making can use the results of this study to improve the aromatic profile and organoleptic quality of yogurt.
Poly(N-isopropyl acrylamide)-grafted SiO2hollow spheres loading vitamin C exhibited excellent temperature-controllable release, and their pyrolysis was studied.
In recent years, considerable effort has been directed toward the preparation of flavoring materials specifically, flavor materials have been sought that provide greater flavor intensity coupled with controlled flavor release for long periods of time. Here, some recent patents related to controlled flavor release are reviewed from the angle of its application field, its mechanism and its determination method. It is found that controlled flavor release often depends not only on materials chemical and physical properties, such as melting point, solution properties and so on, but also on flavors chemical and physical properties, such as diffusion capacity, its stability in different media etc. Meanwhile, flavor release is also controlled by an electric reducing device according to the flavor generation condition. It might be also known that flavor release rate could be determined by using a purge-and-trap/gas chromatographic procedure. In future, its necessary to use mathematical model to study the kinetic behavior of controlled flavor release. Keywords: Flavor, controlled release, diffusion, swelling, melting