V tomto diskusním příspěvku autorský kolektiv představuje vytvořenou anotační konvenci určenou pro manuální a v budoucnu automatickou anotaci soudních rozhodnutí. Finálním cílem je provedení komplexní citační analýzy rozhodovací praxe Ústavního soudu, Nejvyššího soudu a Nejvyššího správního soudu. Tímto textem navazujeme na předcházející text zabývající se možností citační analýzy za využití dostupných právních informačních systémů. Kromě představení anotační konvence se věnujeme i smyslu její existence, kterým má být budoucí automatická extrakce citací ze soudních rozhodnutí. V širší rovině by měl tento text přispět ke kultivaci citační kultury a pomoci pochopit úlohu, kterou odkazy hrají v rozhodovací praxi.
Kniha se zabýva pravnimi aspekty aplikace veřejných licenci v
ceskem pravnim řadu a to i v kontextu rekodifikace ceskeho
soukromeho prava. Pozornost je věnovana veřejnými licencim
obecně, v akademicke praxi, při licencovani software a při
licencovani informaci veřejne spravy.
Computing educators face significant challenges in providing timely support to students, especially in large class settings. Large language models (LLMs) have emerged recently and show great promise for providing on-demand help at a large scale, but there are concerns that students may over-rely on the outputs produced by these models. In this paper, we introduce CodeHelp, a novel LLM-powered tool designed with guardrails to provide on-demand assistance to programming students without directly revealing solutions. We detail the design of the tool, which incorporates a number of useful features for instructors, and elaborate on the pipeline of prompting strategies we use to ensure generated outputs are suitable for students. To evaluate CodeHelp, we deployed it in a first-year computer and data science course with 52 students and collected student interactions over a 12-week period. We examine students' usage patterns and perceptions of the tool, and we report reflections from the course instructor and a series of recommendations for classroom use. Our findings suggest that CodeHelp is well-received by students who especially value its availability and help with resolving errors, and that for instructors it is easy to deploy and complements, rather than replaces, the support that they provide to students.
We analyzed effectiveness of three generative pre-trained transformer (GPT) models in answering multiple-choice question (MCQ) assessments, often involving short snippets of code, from introductory and intermediate programming courses at the postsecondary level. This emerging technology stirs countless discussions of its potential uses (e.g., exercise generation, code explanation) as well as misuses in programming education (e.g., cheating). However, the capabilities of GPT models and their limitations to reason about and/or analyze code in educational settings have been under-explored. We evaluated several OpenAI's GPT models on formative and summative MCQ assessments from three Python courses (530 questions). We found that MCQs containing code snippets are not answered as successfully as those that only contain natural language. While questions requiring to fill-in a blank in the code or completing a natural language statement about the snippet are handled rather successfully, MCQs that require analysis and/or reasoning about the code (e.g., what is true/false about the snippet, or what is its output) appear to be the most challenging. These findings can be leveraged by educators to adapt their instructional practices and assessments in programming courses, so that GPT becomes a valuable assistant for a learner as opposed to a source of confusion and/or potential hindrance in the learning process.
The authors describe a tool for automatic segmentation of the
Czech top-tier court decisions (Supreme Court, Supreme
Administrative Court, and Constitutional Court) into
multi-paragraph parts. The tool allows segmenting a decision
into Header, Party Response, Proceeding Summary, Court
Argumentation, Footer, Dissent, and Footnotes. Segmenting text
into multi-paragraph parts allows to treat different parts
differently even when they contain similar linguistic or other
features. Eventually, this is useful in data processing
pipelines, as this tool is planned for use in automatic
reference recognition purposes.