This chapter reviews the microarray technology and deal with the majority of aspects regarding microarrays. It focuses on today’s knowledge of separation techniques and methodologies of complex signal, i.e. samples. Overall, the chapter reviews the current knowledge on the topic of microarrays and presents the analyses and techniques used, which facilitate such approaches. It starts with the theoretical framework on microarray technology; second, the chapter gives a brief review on statistical methods used for microarray analyses, and finally, it contains a detailed review of the methods used for discriminating traces of nucleic acids within a complex mixture of samples.
This chapter reviews the microarray technology and deal with the majority of aspects regarding microarrays. It focuses on today’s knowledge of separation techniques and methodologies of complex signal, i.e. samples. Overall, the chapter reviews the current knowledge on the topic of microarrays and presents the analyses and techniques used, which facilitate such approaches. It starts with the theoretical framework on microarray technology; second, the chapter gives a brief review on statistical methods used for microarray analyses, and finally, it contains a detailed review of the methods used for discriminating traces of nucleic acids within a complex mixture of samples.
Chronic myeloid leukemia (CML) in childhood is a rare event, accounting for fewer than 5% of all childhood leukemias. The hallmark genetic abnormality of CML is the Philadelphia (Ph) chromosome, wh...
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by debilitating fatigue, lasting for at least 6 months, with associated malaise, headaches, sleep disturbance, and cognitive impairment, which severely impacts quality of life. A significant percentage of ME/CFS patients remain undiagnosed, mainly due to the complexity of the disease and the lack of reliable objective biomarkers. ME/CFS patients display decreased metabolism and the severity of symptoms appears to be directly correlated to the degree of metabolic reduction that may be unique to each individual patient. However, the precise pathogenesis is still unknown, preventing the development of effective treatments. The ME/CFS phenotype has been associated with abnormalities in energy metabolism, which are apparently due to mitochondrial dysfunction in the absence of mitochondrial diseases, resulting in reduced oxidative metabolism. Such mitochondria may be further contributing to the ME/CFS symptomatology by extracellular secretion of mitochondrial DNA, which could act as an innate pathogen and create an autoinflammatory state in the hypothalamus. We propose that stimulation of hypothalamic mast cells by environmental, neuroimmune, pathogenic and stress triggers activates microglia, leading to focal inflammation in the brain and disturbed homeostasis. This process could be targeted for the development of novel effective treatments.
In children, the most commonly encountered type of leukemia is acute lymphoblastic leukemia (ALL). An important source of morbidity and mortality in ALL are viral infections. Even though allogeneic transplantations, which are often applied also in ALL, carry a recognized risk for viral infections, there are multiple factors that make ALL patients susceptible to viral infections. The presence of those factors has an influence in the type and severity of infections. Currently available treatment options do not guarantee a positive outcome for every case of viral infection in ALL, without significant side effects. Side effects can have very serious consequences for the ALL patients, which include nephrotoxicity. For this reason a number of strategies for personalized intervention have been already clinically tested, and experimental approaches are being developed. Adoptive immunotherapy, which entails administration of ex vivo grown immune cells to a patient, is a promising approach in general, and for transplant recipients in particular. The ex vivo grown cells are aimed to strengthen the immune response to the virus that has been identified in the patients’ blood and tissue samples. Even though many patients with weakened immune system can benefit from progress in novel approaches, a viral infection still poses a very significant risk for many patients. Therefore, preventive measures and supportive care are very important for ALL patients.
One of the fundamental discoveries in the field of biology is the ability to modulate the genome and to monitor the functional outputs derived from genomic alterations. In order to unravel new therapeutic options, scientists had initially focused on inducing genetic alterations in primary cells, in established cancer cell lines and mouse models using either RNA interference or cDNA overexpression or various programmable nucleases [zinc finger nucleases (ZNF), transcription activator-like effector nucleases (TALEN)]. Even though a huge volume of data was produced, its use was neither cheap nor accurate. Therefore, the clustered regularly interspaced short palindromic repeats (CRISPR) system was evidenced to be the next step in genome engineering tools. CRISPR-associated protein 9 (Cas9)-mediated genetic perturbation is simple, precise and highly efficient, empowering researchers to apply this method to immortalized cancerous cell lines, primary cells derived from mouse and human origins, xenografts, induced pluripotent stem cells, organoid cultures, as well as the generation of genetically engineered animal models. In this review, we assess the development of the CRISPR system and its therapeutic applications to a wide range of complex diseases (particularly distinct tumors), aiming at personalized therapy. Special emphasis is given to organoids and CRISPR screens in the design of innovative therapeutic approaches. Overall, the CRISPR system is regarded as an eminent genome engineering tool in therapeutics. We envision a new era in cancer biology during which the CRISPR-based genome engineering toolbox will serve as the fundamental conduit between the bench and the bedside; nonetheless, certain obstacles need to be addressed, such as the eradication of side-effects, maximization of efficiency, the assurance of delivery and the elimination of immunogenicity.