The SLC12 family of cation-chloride-cotransporters (CCCs), comprising potassium chloride cotransporters (KCCs)-mediated Cl- extrusion relative to sodium chloride cotransporters (NKCCs)-mediated Cl- loading, play vital roles in cell volume regulation and ion homeostasis. These functions of the CCCs influence a variety of physiological processes, many of which overlap with the pathophysiology of cardiovascular disease. Although not all of the cotransporters have been linked to Mendelian genetic disorders, recent studies have provided new insights into their functional role in vascular and renal cells along with their contribution to cardiovascular diseases. Particularly, an imbalance in potassium levels promote the pathogenesis of atherosclerosis and disturbances in sodium homeostasis are one of the causes of hypertension. Recent findings even suggest hypothalamic signalling as a key signalling pathway in the pathophysiology of hypertension. In this review, we summarize and discuss the role of CCCs in cardiovascular disease with particular emphasis on knowledge gained in recent years on NKCCs and KCCs.
Worsened stroke outcomes with hypertension comorbidity are insensitive to blood pressure-lowering therapies. In an experimental stroke model with comorbid hypertension, we investigated causal roles of ang II (angiotensin II)-mediated stimulation of the brain WNK (with no lysine [K] kinases)-SPAK (STE20/SPS1-related proline/alanine-rich kinase)-NKCC1 (Na-K-Cl cotransporter) complex in worsened outcomes.
The SLC12 family of cation-chloride-cotransporters (CCCs) is comprised of potassium chloride cotransporters (KCCs), which mediate Cl− extrusion and sodium-potassium chloride cotransporters (N[K]CCs), which mediate Cl− loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. The functions of CCCs influence a variety of physiological processes, many of which overlap with the pathophysiology of cardiovascular disease. Although not all of the cotransporters have been linked to Mendelian genetic disorders, recent studies have provided new insights into their functional role in vascular and renal cells in addition to their contribution to cardiovascular diseases. Particularly, an imbalance in potassium levels promotes the pathogenesis of atherosclerosis and disturbances in sodium homeostasis are one of the causes of hypertension. Recent findings suggest hypothalamic signaling as a key signaling pathway in the pathophysiology of hypertension. In this review, we summarize and discuss the role of CCCs in cardiovascular disease with particular emphasis on knowledge gained in recent years on NKCCs and KCCs.
The circadian system plays an immense role in controlling physiological processes in our body. The suprachiasmatic nucleus (SCN) supervises this system, regulating and harmonising the circadian rhythms in our body. Most neurons present in the SCN are GABAergic neurons. Although GABA is considered the main inhibitory neurotransmitter of the CNS, recent studies have shown that excitatory responses were recorded in this area. These responses are enabled by an increase in intracellular chloride ions [Cl−]i levels. The chloride (Cl−) levels in GABAergic neurons are controlled by two solute carrier 12 (SLC12) cation-chloride-cotransporters (CCCs): Na+/K+/Cl− co-transporter (NKCC1) and K+/Cl− co-transporter (KCC2), that respectively cause an influx and efflux of Cl−. Recent works have found altered expression and/or activity of either of these co-transporters in SCN neurons and have been associated with circadian rhythms. In this review, we summarize and discuss the role of CCCs in circadian rhythms, and highlight these recent advances which attest to CCC's growing potential as strong research and therapeutic targets.
Hypertension is a known risk factor for cognition-related pathologies including dementia. The National Institute of Health and Care Excellence (NICE) guidelines recommend angiotensin (Ang) II receptor blockers (ARBs) or angiotensin-converting enzyme inhibitors (ACEIs) as a first-line treatment for hypertension. Although both ARBs and ACEIs show neuroprotective effects, ACEIs show contradictory side effects; therefore, ARBs may be a more viable option. However, trials assessing the effects of ARBs on cognition are scarce and conflicting. Therefore, the aim of this review is to conduct a systematic review and synthesise data on the influence of ARBs on cognition and dementia prevention. Five databases were searched from 1992–2022 to produce 13 randomised controlled trials (RCTs) involving 26,907 patients that compared associations of ARBs against placebos or other antihypertensives on cognition or probable dementia with a minimum duration of 3 months. ARBs showed greater cognitive benefits when compared to hydrochlorothiazide (HCTZ), beta blockers (BB), and ACEIs. Our findings showed that although ARBs are superior to some antihypertensives such as ACEIs, thiazide and beta blockers, they made no difference in comparison to the placebo in all but one sample of patients. The positive effects on cognitive performances are equal to calcium channel blockers (CCBs) and lower than statin. The neuroprotective effects of ARBs are also more beneficial when ARBs are taken at the same time as a statin. Due to these inconsistencies, robust conclusions cannot be made. Future trials are warranted and, if successful, could have positive economic implications and consequently improve quality of life.
Stroke is one of the major culprits responsible for morbidity and mortality worldwide, and the currently available pharmacological strategies to combat this global disease are scanty. Cation-chloride cotransporters (CCCs) are expressed in several tissues (including neurons) and extensively contribute to the maintenance of numerous physiological functions including chloride homeostasis. Previous studies have implicated two CCCs, the Na+-K+-Cl− and K+-Cl− cotransporters (NKCCs and KCCs) in stroke episodes along with their upstream regulators, the with-no-lysine kinase (WNKs) family and STE20/SPS1-related proline/alanine rich kinase (SPAK) or oxidative stress response kinase (OSR1) via a signaling pathway. As the WNK-SPAK/OSR1 pathway reciprocally regulates NKCC and KCC, a growing body of evidence implicates over-activation and altered expression of NKCC1 in stroke pathology whilst stimulation of KCC3 during and even after a stroke event is neuroprotective. Both inhibition of NKCC1 and activation of KCC3 exert neuroprotection through reduction in intracellular chloride levels and thus could be a novel therapeutic strategy. Hence, this review summarizes the current understanding of functional regulations of the CCCs implicated in stroke with particular focus on NKCC1, KCC3, and WNK-SPAK/OSR1 signaling and discusses the current and potential pharmacological treatments for stroke.
Potassium chloride cotransporters 2 (KCC2) is a member of the solute carrier family 12 (SLC12) of cation-chloride-cotransporters (CCCs), found exclusively in the neuron and is essential for the proper functioning of Cl- homeostasis and consequently functional GABAergic inhibition. Failure in proper regulation of KCC2 is deleterious and has been associated with the prevalence of several neurological diseases, including epilepsy. There has been considerable progress with regard to understanding the mechanisms involved in the regulation of KCC2, accredited to the development of techniques that enable researchers to study its functions and activities; either via direct (assessing kinase regulatory sites phosphorylation) or indirect (observing and monitoring GABA activity) investigations. Here, the protocol highlights how to investigate KCC2 phosphorylation at kinase regulatory sites - Thr906 and Thr1007- using western blotting technique. There are other classic methods used to directly measure KCC2 activity, such as rubidium ion and thallium ion uptake assay. Further techniques such as patch-clamp-electrophysiology are used to measure GABA activity; hence, indirectly reflecting activated and/or inactivated KCC2 as informed by the assessment of intracellular chloride ion homeostasis. A few of these additional techniques will be briefly discussed in this manuscript.
Hypertension is the largest risk factor for cardiovascular disease, the leading cause of mortality worldwide. As blood pressure regulation is influenced by multiple physiological systems, hypertension cannot be attributed to a single identifiable etiology. Three decades of research into Mendelian forms of hypertension implicated alterations in the renal tubular sodium handling, particularly the distal convoluted tubule (DCT)-native, thiazide-sensitive Na-Cl cotransporter (NCC). Altered functions of the NCC have shown to have profound effects on blood pressure regulation as illustrated by the over activation and inactivation of the NCC in Gordon's and Gitelman syndromes respectively. Substantial progress has uncovered multiple factors that affect the expression and activity of the NCC. In particular, NCC activity is controlled by phosphorylation/dephosphorylation, and NCC expression is facilitated by glycosylation and negatively regulated by ubiquitination. Studies have even found parvalbumin to be an unexpected regulator of the NCC. In recent years, there have been considerable advances in our understanding of NCC control mechanisms, particularly
Potassium chloride cotransporters 2 (KCC2) is a member of the solute carrier family 12 (SLC12) of cation-chloride-cotransporters (CCCs), found exclusively in the neuron and is essential for the proper functioning of Cl- homeostasis and consequently functional GABAergic inhibition. Failure in proper regulation of KCC2 is deleterious and has been associated with the prevalence of several neurological diseases, including epilepsy. There has been considerable progress with regard to understanding the mechanisms involved in the regulation of KCC2, accredited to the development of techniques that enable researchers to study its functions and activities; either via direct (assessing kinase regulatory sites phosphorylation) or indirect (observing and monitoring GABA activity) investigations. Here, the protocol highlights how to investigate KCC2 phosphorylation at kinase regulatory sites - Thr906 and Thr1007- using western blotting technique. There are other classic methods used to directly measure KCC2 activity, such as rubidium ion and thallium ion uptake assay. Further techniques such as patch-clamp-electrophysiology are used to measure GABA activity; hence, indirectly reflecting activated and/or inactivated KCC2 as informed by the assessment of intracellular chloride ion homeostasis. A few of these additional techniques will be briefly discussed in this manuscript.