As of 2015, global carbon flux analyses indicate that 30% of anthropogenic carbon emissions are taken up by an unidentified carbon "sink" likely through vegetation on land. Until the sink can be localized and studied, the processes underlying the carbon uptake cannot be identified, and its future response to a rapidly changing climate cannot be predicted. Satellite remote sensing combined with terrestrial carbon models have shown promise to locate and quantify the magnitude of the land carbon sink, understand it's underlying causes, and how vegetation might respond to climate change.
The Mongolian Steppe is one of the largest remaining grassland ecosystems. Recent studies have reported widespread decline of vegetation across the steppe and about 70% of this ecosystem is now considered degraded. Among the scientific community there has been an active debate about whether the observed degradation is related to climate, or over-grazing, or both. Here, we employ a new atmospheric correction and cloud screening algorithm (MAIAC) to investigate trends in satellite observed vegetation phenology. We relate these trends to changes in climate and domestic animal populations. A series of harmonic functions is fitted to Moderate Resolution Imaging Spectroradiometer (MODIS) observed phenological curves to quantify seasonal and inter-annual changes in vegetation. Our results show a widespread decline (of about 12% on average) in MODIS observed normalized difference vegetation index (NDVI) across the country but particularly in the transition zone between grassland and the Gobi desert, where recent decline was as much as 40% below the 2002 mean NDVI. While we found considerable regional differences in the causes of landscape degradation, about 80% of the decline in NDVI could be attributed to increase in livestock. Changes in precipitation were able to explain about 30% of degradation across the country as a whole but up to 50% in areas with denser vegetation cover (P < 0.05). Temperature changes, while significant, played only a minor role (r(2) = 0.10, P < 0.05). Our results suggest that the cumulative effect of overgrazing is a primary contributor to the degradation of the Mongolian steppe and is at least partially responsible for desertification reported in previous studies.
Resolving the debate surrounding the nature and controls of seasonal variation in the structure and metabolism of Amazonian rainforests is critical to understanding their response to climate change. In situ studies have observed higher photosynthetic and evapotranspiration rates, increased litterfall and leaf flushing during the Sunlight-rich dry season. Satellite data also indicated higher greenness level, a proven surrogate of photosynthetic carbon fixation, and leaf area during the dry season relative to the wet season. Some recent reports suggest that rainforests display no seasonal variations and the previous results were satellite measurement artefacts. Therefore, here we re-examine several years of data from three sensors on two satellites under a range of sun positions and satellite measurement geometries and document robust evidence for a seasonal cycle in structure and greenness of wet equatorial Amazonian rainforests. This seasonal cycle is concordant with independent observations of solar radiation. We attribute alternative conclusions to an incomplete study of the seasonal cycle, i.e. the dry season only, and to prognostications based on a biased radiative transfer model. Consequently, evidence of dry season greening in geometry corrected satellite data was ignored and the absence of evidence for seasonal variation in lidar data due to noisy and saturated signals was misinterpreted as evidence of the absence of changes during the dry season. Our results, grounded in the physics of radiative transfer, buttress previous reports of dry season increases in leaf flushing, litterfall, photosynthesis and evapotranspiration in well-hydrated Amazonian rainforests.
Critical to habitat management is the understanding of not only the location of animal food resources, but also the timing of their availability. Grizzly bear (Ursus arctos) diets, for example, shift seasonally as different vegetation species enter key phenological phases. In this paper, we describe the use of a network of seven ground-based digital camera systems to monitor understorey and overstorey vegetation within species-specific regions of interest. Established across an elevation gradient in western Alberta, Canada, the cameras collected true-colour (RGB) images daily from 13 April 2009 to 27 October 2009. Fourth-order polynomials were fit to an RGB-derived index, which was then compared to field-based observations of phenological phases. Using linear regression to statistically relate the camera and field data, results indicated that 61% (r 2 = 0.61, df = 1, F = 14.3, p = 0.0043) of the variance observed in the field phenological phase data is captured by the cameras for the start of the growing season and 72% (r 2 = 0.72, df = 1, F = 23.09, p = 0.0009) of the variance in length of growing season. Based on the linear regression models, the mean absolute differences in residuals between predicted and observed start of growing season and length of growing season were 4 and 6 days, respectively. This work extends upon previous research by demonstrating that specific understorey and overstorey species can be targeted for phenological monitoring in a forested environment, using readily available digital camera technology and RGB-based vegetation indices.
Plant photosynthesis is critical for understanding carbon cycling at landscape and global scales. While tower-based measurements of CO2 have enhanced our knowledge of ecosystem fluxes, scaling these measurements globally is difficult. Satellite observations provide full, global coverage and hold the potential of spatially continuous measurements of ecosystem fluxes, but the requirements for modeling these fluxes from satellite-derived surface parameters are not well understood. This article describes the further development of a tower-mounted, automated, multiangular spectroradiometer system (AMSPEC II) used to study the relationships between canopy-reflectance and plant-physiological processes from multiangular observations, thereby facilitating a comprehensive modeling of the bidirectional reflectance distribution of the canopy. A Webcam permits simultaneous monitoring of phenological changes over time.