In present work, we investigated the genetic instability in mice of F1, of F2 and of F3 generations born from males irradiated by a low-dose rate of high-LET radiation that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights in vivo in polychromatic erythrocytes of bone marrow using the micronucleus test. Two-month-old males of SHK white mongrel mice were used. Irradiation was performed for 24 h a day in the radiation field behind the concrete shield of the U-70 accelerator of 70 GeV protons (Serpukhov) to accumulate doses of 11.5, of 21.5 and of 31.5 cGy (1 cGy/day). The experiments demonstrated that in mice of F1 generation born from males irradiated with doses of 11.5, 21.5 and of 31.5 cGy, an increase in sensitivity to additional irradiation with a dose of 1.5 Gy of gamma-radiation and the absence of adaptive response compared with the descendants of unirradiated males occur. In contrast to F1 generation genetic instability in mice of the F2 and F3 generations was revealed only by the absence of adaptive response. These data indicate a genetic instability in F1, F2 and F3 generations born from irradiated males.
Experiments with exposure of mice to low doses of chronic high-LET radiation were carried out in the radiation field behind the concrete wall of the Serpukhov accelerators of protons with the energy of 70 GeV. The goal was to study dose dependence, radiation adaptive response (AR), and genetic instability. Mice (SHK strain) were irradiated continuously 15, 24 and 31 days which corresponded to the doses of 11.5, 21.5 and 31.5 Gy. Cytogenetic damages were determined using the micronuclear test in marrow polychromatophil erythrocytes. It was shown that all the experimental doses aggravated the cytogenetic damage; however, no AR induction in marrow cells was observed. Males of the F1 generation born from the males irradiated at 11.5 Gy had same level of spontaneous cytogenetic damage as males born from non-irradiated parents. Yet, they displayed an exaggerated sensitivity to additional exposure to 1.5 Gy and no AR induction by the standard gamma-protocol which is indicative of genetic instability.
In present work, we investigated the peculiarities of the effect of a low-dose rate high-LET radiation that simulates the spectral and component composition of the radiation field formed in the atmosphere at a height of 10 km on mice in vivo. The dose dependence and adaptive response were examined. Irradiation of mice was performed for 24 h a day in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons for the time (15-31 days) necessary to accumulate the required doses. The experiments demonstrated that irradiation of mice in vivo in the dose range of 11.5-31.5 cGy leads to an increase in cytogenetic damage to bone marrow cells and induces no adaptive response in bone marrow cells.