Introduction The implementation of the 10-year fishing ban in the Yangtze River has provided a crucial opportunity for the recovery of rare and endangered diadromous species, such as Coilia nasus . Methods In this study, we utilized electronic length–frequency analysis (ELEFAN) and length-based Bayesian biomass estimation (LBB) method to fit the body length data of C. nasus from the Yangtze River Estuary and its adjacent sea areas before and after the fishing ban (2019-2023), and the resource changes of C. nasus population were evaluated. Additionally, combined the catch production monitoring data from 2020 to 2022, we comprehensively analyzed the impact of the Yangtze River fishing ban on the recovery of C. nasus resources. Results The results showed that: (1) The proportion of quantity, weight and occurrence frequency of C. nasus in catches showed a significant increasing trend year by year. (2) 4,994 C. nasus were caught from 2021–2023, with body lengths ranging from 13–410 mm. In 2023, the average body length and weight of C. nasus had increased by 39.93% and 133.89%, respectively, from those in 2021. (3) ELEFAN estimated that the growth parameters after fishing ban, including asymptotic length, growth coefficient, and the theoretical age at length zero, were determined to be 42.92 cm, 0.43 year -1 , and -0.31 year, respectively. The total mortality rate, fishing mortality rate, and exploitation rate were determined to be 1.47 year -1 , 0.79 year -1 , and 0.54, respectively. (4) LBB estimated that the relative fishing mortality of C. nasus before the fishing ban increased from 1.22 in 2019 to 2.65 in 2020, while the relative biomass decreased from 0.34 to 0.22. After the fishing ban, the relative fishing mortality decreased from 0.85 in 2021 to 0.06 in 2023, and the relative biomass increased from 0.26 in 2021 to 0.90 in 2023, with a significant increase in 2022, indicating a clear recovery trend in C. nasus resources. Discussion By quantifying the resource characteristics of C. nasus before and after the 10-year fishing ban on the Yangtze River, this research revealed the impact of the ban and provided a reference for future systematic evaluations of the C. nasus population.
Abstract DNA barcoding by sequencing a standard region of cytochrome c oxidase subunit I (COⅠ) provides an accurate, rapid method for identifying different species. In this study, we provide a molecular taxonomic assessment of demersal fishes in the Bering Sea and Chukchi Sea based on DNA barcoding, and a total of 123 mitochondrial COⅠ partial fragments with a length of 652 bp were obtained. The consensus among all sequences was determined by alignment via a BLAST search in GenBank. Phylogenetic relationships were reconstructed on the basis of neighbor-joining (NJ) trees and barcoding gaps. The 39 species investigated in this analysis were distributed among 10 families. Five families within Scorpaeniformes including 19 species accounted for almost half of the species. The next largest group was Perciformes, with 9 species, followed by Pleuronectiformes and Gadiformes, with 5 species each, and the smallest number of species belonged to Rajiformes. At the family level, Cottidae was the largest family, followed by Zoarcidae, accounting for 8 species. The other eight families—Gadidae, Pleuronectidae, Psychrolutidae, Agonidae, Liparidae, Ammodytidae, Hexagrammidae, and Rajidae—accounted for a smaller proportion of species. In brief, our study shows that DNA barcodes are an effective tool for studying fish diversity and phylogeny in the Bering Sea and Chukchi Sea. The contribution of DNA barcoding to identifying Arctic fish species may benefit further Arctic fish studies on biodiversity, biogeography and conservation in the future.