Protonation constants for 3,6,9,16,19,22-hexaazatricyclo[22.2.2.211,14]triaconta-1(27),11(30),12,14(29),24(28), 25-hexaene (P2) and 3,7,11,18,22,26-hexaazatricyclo[26.2.2.213,16]tetratriaconta-1(31),13(34),14,16(33),28(32),29-hexaene (P3) and their host–guest interactions with tripolyphosphate (Tr) and ATP (At) have been determined and evaluated by 1H NMR and potentiometric equilibrium methods. Ternary complexes were formed in aqueous solution as a result of hydrogen bond formation and Coulombic interactions between the host and the guest. For the case of ATP π-stacking interactions were found. Formation constants for all the species obtained are reported and compared with the isomeric 3,7,11,19,23,27-hexaazatricyclo[27.3.1.113,17]tetratriaconta-1(33),13,15,17(34),29,31-hexaene (Bn) and 3,6,9,17,20,23-hexaazatricyclo[23.3.1.111,15]triaconta-1(29),11,13,15(30), 25(27)-hexaene (Bd) ligands. Bonding interactions reach a maximum for H6P2Tr+, yielding a value of 12.02. The selectivity of the P3 and P2 ligands with regard to ATP and Tr substrates (S) is discussed and illustrated with global species distribution diagrams showing a strong preference for the latter over the former as a consequence of the much stronger formation constants with Tr. An analysis of the isomeric effect was also carried out by comparing the P3-S vs. Bn-S and P2-S vs. Bd-S systems. For the systems using Tr, a selectivity of more than 97% (pH 5.0) was achieved for its complexation when using the meta (Bd) rather than the para (P2) isomer, due solely to the size and shape of the receptor's cavity. In the case of the P3 and Bn ligands the selectivity toward Tr complexation decreased to 85% (pH 8.0). Molecular recognition of tripolyphosphate and ATP is achieved through the formation of anionic complexes with isomeric hexaazamacrocyclic ligands. A selectivity of more than 97% is achieved for tripolyphosphate complexation when using the meta rather than the para isomer, a result due solely to the size and shape of the receptor's cavity.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
The host−guest interactions between ortho- (Ph), pyro- (Pp), and tripolyphosphate (Tr) anions together with ATP (At), ADP (Ad), and AMP (Am) nucleotides and the two hexaazamacrocyclic ligands 1,15-dioxa-4,8,12,18,22,26-hexaazacyclooctacosane (Pn) and 1,13-dioxa-4,7,10,16,20,24-hexaazacyclohexacosane (Op) have been investigated by potentiometric equilibrium methods. Ternary complexes are formed in aqueous solution as a result of hydrogen bond formation and Coulombic attraction between the host and the guest. Formation constants for all the species obtained are reported. The selectivity of the Pn and Op ligands with regard to the different phosphate and nucleotide substrates is discussed and illustrated with total species distribution diagrams. A comparison is also carried out, with the results obtained in this work and those obtained previously with three other closely related hexaazamacrocyclic ligands. This comparison manifests the importance of ligand basicity, rigidity, and π-stacking capability in order to understand their binding and selectivity.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.