Recent animal studies demonstrated immunosuppressive effects of opioid withdrawal resulting in a higher risk of infection. The aim of this study was to determine the impact of remifentanil discontinuation on intensive care unit (ICU)-acquired infection.This was a prospective observational cohort study performed in a 30-bed medical and surgical university ICU, during a one-year period. All patients hospitalised in the ICU for more than 48 hours were eligible. Sedation was based on a written protocol including remifentanil with or without midazolam. Ramsay score was used to evaluate consciousness. The bedside nurse adjusted sedative infusion to obtain the target Ramsay score. Univariate and multivariate analyses were performed to determine risk factors for ICU-acquired infection.Five hundred and eighty-seven consecutive patients were included in the study. A microbiologically confirmed ICU-acquired infection was diagnosed in 233 (39%) patients. Incidence rate of ICU-acquired infection was 38 per 1000 ICU-days. Ventilator-associated pneumonia was the most frequently diagnosed ICU-acquired infection (23% of study patients). Pseudomonas aeruginosa was the most frequently isolated microorganism (30%). Multivariate analysis identified remifentanil discontinuation (odds ratio (OR) = 2.53, 95% confidence interval (CI) = 1.28 to 4.99, P = 0.007), simplified acute physiology score II at ICU admission (1.01 per point, 95% CI = 1 to 1.03, P = 0.011), mechanical ventilation (4.49, 95% CI = 1.52 to 13.2, P = 0.006), tracheostomy (2.25, 95% CI = 1.13 to 4.48, P = 0.021), central venous catheter (2.9, 95% CI = 1.08 to 7.74, P = 0.033) and length of hospital stay (1.05 per day, 95% CI = 1.03 to 1.08, P < 0.001) as independent risk factors for ICU-acquired infection.Remifentanil discontinuation is independently associated with ICU-acquired infection.
Although immunomodulators have established benefit against the new coronavirus disease (COVID-19) in general, it is uncertain whether such agents improve outcomes without increasing the risk of secondary infections in the specific subgroup of previously immunocompromised patients. We assessed the effect of immunomodulators on outcomes of immunocompromised patients hospitalized for COVID-19.
Patients with COVID-19 pneumonia have an excess of inflammation and increased concentrations of cytokines including interleukin-1 (IL-1). We aimed to determine whether anakinra, a recombinant human IL-1 receptor antagonist, could improve outcomes in patients in hospital with mild-to-moderate COVID-19 pneumonia.In this multicentre, open-label, Bayesian randomised clinical trial (CORIMUNO-ANA-1), nested within the CORIMUNO-19 cohort, we recruited patients from 16 University hospitals in France with mild-to-moderate COVID-19 pneumonia, severe acute respiratory syndrome coronavirus 2 infection confirmed by real-time RT-PCR, requiring at least 3 L/min of oxygen by mask or nasal cannula but without ventilation assistance, a score of 5 on the WHO Clinical Progression Scale (WHO-CPS), and a C-reactive protein serum concentration of more than 25 mg/L not requiring admission to the intensive care unit at admission to hospital. Eligible patients were randomly assigned (1:1) using a web-based secure centralised system, stratified by centre and blocked with varying block sizes (randomly of size two or four), to either usual care plus anakinra (200 mg twice a day on days 1-3, 100 mg twice on day 4, 100 mg once on day 5) or usual care alone. Usual care was provided at the discretion of the site clinicians. The two coprimary outcomes were the proportion of patients who had died or needed non-invasive or mechanical ventilation by day 4 (ie, a score of >5 on the WHO-CPS) and survival without need for mechanical or non-invasive ventilation (including high-flow oxygen) at day 14. All analyses were done on an intention-to-treat basis. The trial is registered with ClinicalTrials.gov, NCT04341584, and is now closed to accrual.Between April 8 and April 26, 2020, we screened 153 patients. The study was stopped early following the recommendation of the data and safety monitoring board, after the recruitment of 116 patients: 59 were assigned to the anakinra group, and 57 were assigned to the usual care group. Two patients in the usual care group withdrew consent and were not analysed. In the analysable population, the median age was 66 years (IQR 59 to 76) and 80 (70%) participants were men. In the anakinra group, 21 (36%) of 59 patients had a WHO-CPS score of more than 5 at day 4 versus 21 (38%) of 55 in the usual care group (median posterior absolute risk difference [ARD] -2·5%, 90% credible interval [CrI] -17·1 to 12·0), with a posterior probability of ARD of less than 0 (ie, anakinra better than usual care) of 61·2%. At day 14, 28 (47%; 95% CI 33 to 59) patients in the anakinra group and 28 (51%; 95% CI 36 to 62) in the usual care group needed ventilation or died, with a posterior probability of any efficacy of anakinra (hazard ratio [HR] being less than 1) of 54·5% (median posterior HR 0·97; 90% CrI 0·62 to 1·52). At day 90, 16 (27%) patients in the anakinra group and 15 (27%) in the usual care group had died. Serious adverse events occurred in 27 (46%) patients in the anakinra group and 21 (38%) in the usual care group (p=0·45).Anakinra did not improve outcomes in patients with mild-to-moderate COVID-19 pneumonia. Further studies are needed to assess the efficacy of anakinra in other selected groups of patients with more severe COVID-19.The Ministry of Health, Programme Hospitalier de Recherche Clinique, Foundation for Medical Research, and AP-HP Foundation.
Severe pneumonia with hyperinflammation and elevated interleukin-6 is a common presentation of coronavirus disease 2019 (COVID-19).
Objective
To determine whether tocilizumab (TCZ) improves outcomes of patients hospitalized with moderate-to-severe COVID-19 pneumonia.
Design, Setting, and Particpants
This cohort-embedded, investigator-initiated, multicenter, open-label, bayesian randomized clinical trial investigating patients with COVID-19 and moderate or severe pneumonia requiring at least 3 L/min of oxygen but without ventilation or admission to the intensive care unit was conducted between March 31, 2020, to April 18, 2020, with follow-up through 28 days. Patients were recruited from 9 university hospitals in France. Analyses were performed on an intention-to-treat basis with no correction for multiplicity for secondary outcomes.
Interventions
Patients were randomly assigned to receive TCZ, 8 mg/kg, intravenously plus usual care on day 1 and on day 3 if clinically indicated (TCZ group) or to receive usual care alone (UC group). Usual care included antibiotic agents, antiviral agents, corticosteroids, vasopressor support, and anticoagulants.
Main Outcomes and Measures
Primary outcomes were scores higher than 5 on the World Health Organization 10-point Clinical Progression Scale (WHO-CPS) on day 4 and survival without need of ventilation (including noninvasive ventilation) at day 14. Secondary outcomes were clinical status assessed with the WHO-CPS scores at day 7 and day 14, overall survival, time to discharge, time to oxygen supply independency, biological factors such as C-reactive protein level, and adverse events.
Results
Of 131 patients, 64 patients were randomly assigned to the TCZ group and 67 to UC group; 1 patient in the TCZ group withdrew consent and was not included in the analysis. Of the 130 patients, 42 were women (32%), and median (interquartile range) age was 64 (57.1-74.3) years. In the TCZ group, 12 patients had a WHO-CPS score greater than 5 at day 4 vs 19 in the UC group (median posterior absolute risk difference [ARD] −9.0%; 90% credible interval [CrI], −21.0 to 3.1), with a posterior probability of negative ARD of 89.0% not achieving the 95% predefined efficacy threshold. At day 14, 12% (95% CI −28% to 4%) fewer patients needed noninvasive ventilation (NIV) or mechanical ventilation (MV) or died in the TCZ group than in the UC group (24% vs 36%, median posterior hazard ratio [HR] 0.58; 90% CrI, 0.33-1.00), with a posterior probability of HR less than 1 of 95.0%, achieving the predefined efficacy threshold. The HR for MV or death was 0.58 (90% CrI, 0.30 to 1.09). At day 28, 7 patients had died in the TCZ group and 8 in the UC group (adjusted HR, 0.92; 95% CI 0.33-2.53). Serious adverse events occurred in 20 (32%) patients in the TCZ group and 29 (43%) in the UC group (P = .21).
Conclusions and Relevance
In this randomized clinical trial of patients with COVID-19 and pneumonia requiring oxygen support but not admitted to the intensive care unit, TCZ did not reduce WHO-CPS scores lower than 5 at day 4 but might have reduced the risk of NIV, MV, or death by day 14. No difference on day 28 mortality was found. Further studies are necessary for confirming these preliminary results.