Mutations in the Tuberous Sclerosis Complex (TSC) genes result in the hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in mesenchymal pulmonary cells. Rapamycin (Sirolimus
Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease caused by tuberous sclerosis complex 1/2 (TSC1/2) gene mutations in pulmonary mesenchymal cells resulting in activation of the mechanistic target of rapamycin complex 1 (mTORC1). A subset of LAM patients develops pulmonary vascular remodeling and pulmonary hypertension. Little, however, is known regarding how LAM cells communicate with endothelial cells (ECs) to trigger vascular remodeling. In end-stage LAM lung explants, we identified endothelial cell dysfunction characterized by increased proliferation, migration, defective angiogenesis, and dysmorphic endothelial tube network formation. To model LAM disease, we utilized an mTORC1 gain-of-function mouse model with a Tsc2 knock-out (Tsc2KO) specific to lung mesenchyme (Tbx4LME-CreTsc2fl/fl), similar to the mesenchyme specific genetic alterations seen in human disease. As early as 8 weeks of age, ECs from Tbx4LME-CreTsc2fl/fl mice exhibited marked transcriptomic changes despite absence of morphological changes to the distal lung microvasculature. In contrast, 1 year old Tbx4LME-CreTsc2fl/fl mice spontaneously developed pulmonary vascular remodeling with increased medial thickness. Single cell RNA-sequencing of 1 year old mouse lung identified paracrine ligands originating from Tsc2KO mesenchyme which can signal through receptors in arterial ECs. These ECs had transcriptionally altered genes including those in pathways associated with blood vessel remodeling. The proposed pathophysiologic mesenchymal ligand/ EC receptor crosstalk highlights the importance of an altered mesenchymal-EC axis in LAM and other hyperactive mTORC1-driven diseases. Since ECs in LAM patients and in Tbx4LME-CreTsc2fl/fl mice do not harbor TSC2 mutations, our study demonstrates that constitutively active mTORC1 lung mesenchymal cells orchestrate dysfunctional EC responses which contribute to pulmonary vascular remodeling.
Severe lung injury causes airway basal stem cells to migrate and outcompete alveolar stem cells, resulting in dysplastic repair. We found that this "stem cell collision" generates an injury-induced tissue niche containing keratin 5
Abstract Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2 -deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.
Abstract Accurate cell type identification is a key and rate-limiting step in single-cell data analysis. Single-cell references with comprehensive cell types, reproducible and functionally validated cell identities, and common nomenclatures are much needed by the research community for automated cell type annotation, data integration, and data sharing. Here, we develop a computational pipeline utilizing the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples to construct LungMAP single-cell reference (CellRef) for both normal human and mouse lungs. CellRefs define 48 human and 40 mouse lung cell types catalogued from diverse anatomic locations and developmental time points. We demonstrate the accuracy and stability of LungMAP CellRefs and their utility for automated cell type annotation of both normal and diseased lungs using multiple independent methods and testing data. We develop user-friendly web interfaces for easy access and maximal utilization of the LungMAP CellRefs.
Abstract Pulmonary vascular remodeling is the key structural abnormality in pulmonary hypertension (PH). Mechanistic target of rapamycin (mTOR) has long been suspected to play a role in the development of pulmonary vascular remodeling. However, underlying cellular and molecular mechanisms leading to this pathophysiological condition remain incompletely understood. To elucidate the crosstalk between lung mesenchyme with activated mTOR and endothelial cells (ECs), we focused on a monogenic lung disease, pulmonary lymphangioleiomyomatosis (LAM). LAM is a progressive cystic lung disease caused by a mutational inactivation of tuberous sclerosis complex (TSC1/TSC2), which results in constitutive mTOR activation in mesenchymal LAM cells. ECs derived from LAM lung explants showed increased proliferation, migration, and defective angiogenesis compared to age- and sex-matched ECs from control human lung. In LAM cells, we found increased WNT2 ligand expression. We also identified corresponding Frizzled 4 (FZD) receptors on ECs isolated from distal LAM lung, suggesting cellular crosstalk between LAM cells and ECs. In endothelial-fibroblast cocultures, treatment of normal ECs with WNT2 ligands recapitulated LAM EC phenotype and morphology. We observed transcriptomic upregulation in metabolic, angiogenic and growth pathways in ECs of young mice, while 1-year-old Tsc2 KO mice spontaneously developed pulmonary vascular remodeling with concurrent elevation in right ventricular systolic pressure. Our study demonstrates that LAM cells are not just a pathological mesenchymal cell state but a signaling hub that contributes to dysregulated cellular response in the surrounding vasculature, eventual pulmonary vascular remodeling and PH.
The mechanistic target of rapamycin (mTOR) and wingless-related integration site (Wnt) signal transduction networks are evolutionarily conserved mammalian growth and cellular development networks. Most cells express many of the proteins in both pathways, and this review will briefly describe only the key proteins and their intra- and extracellular crosstalk. These complex interactions will be discussed in relation to cancer development, drug resistance, and stem cell exhaustion. This review will also highlight the tumor-suppressive tuberous sclerosis complex (TSC) mutated, mTOR-hyperactive lung disease of women, lymphangioleiomyomatosis (LAM). We will summarize recent advances in the targeting of these pathways by monotherapy or combination therapy, as well as future potential treatments.
The COVID-19 pandemic poses a serious global health threat. The rapid global spread of SARS-CoV-2 highlights an urgent need to develop effective therapeutics for blocking SARS-CoV-2 infection and spread. Stimulator of Interferon Genes (STING) is a chief element in host antiviral defense pathways. In this study, we examined the impact of the STING signaling pathway on coronavirus infection using the human coronavirus OC43 (HCoV-OC43) model. We found that HCoV-OC43 infection did not stimulate the STING signaling pathway, but the activation of STING signaling effectively inhibits HCoV-OC43 infection to a much greater extent than that of type I interferons (IFNs). We also discovered that IRF3, the key STING downstream innate immune effector, is essential for this anticoronavirus activity. In addition, we found that the amidobenzimidazole (ABZI)-based human STING agonist diABZI robustly blocks the infection of not only HCoV-OC43 but also SARS-CoV-2. Therefore, our study identifies the STING signaling pathway as a potential therapeutic target that could be exploited for developing broad-spectrum antiviral therapeutics against multiple coronavirus strains in order to face the challenge of future coronavirus outbreaks.IMPORTANCE The highly infectious and lethal SARS-CoV-2 is posing an unprecedented threat to public health. Other coronaviruses are likely to jump from a nonhuman animal to humans in the future. Novel broad-spectrum antiviral therapeutics are therefore needed to control known pathogenic coronaviruses such as SARS-CoV-2 and its newly mutated variants, as well as future coronavirus outbreaks. STING signaling is a well-established host defense pathway, but its role in coronavirus infection remains unclear. In the present study, we found that activation of the STING signaling pathway robustly inhibits infection of HCoV-OC43 and SARS-CoV-2. These results identified the STING pathway as a novel target for controlling the spread of known pathogenic coronaviruses, as well as emerging coronavirus outbreaks.