Tumors with low frequencies of checkpoint positive tumor-infiltrating lymphocytes (cpTIL) have a low likelihood of response to PD-1 blockade. We conducted a prospective multicenter phase II trial of intratumoral plasmid IL-12 (tavokinogene telseplasmid; "tavo") electroporation combined with pembrolizumab in patients with advanced melanoma with low frequencies of checkpoint positive cytotoxic lymphocytes (cpCTL).Tavo was administered intratumorally days 1, 5, and 8 every 6 weeks while pembrolizumab (200 mg, i.v.) was administered every 3 weeks. The primary endpoint was objective response rate (ORR) by RECIST, secondary endpoints included duration of response, overall survival and progression-free survival. Toxicity was evaluated by the CTCAE v4. Extensive correlative analysis was done.The combination of tavo and pembrolizumab was well tolerated with adverse events similar to those previously reported with pembrolizumab alone. Patients had a 41% ORR (n = 22, RECIST 1.1) with 36% complete responses. Correlative analysis showed that the combination enhanced immune infiltration and sustained the IL-12/IFNγ feed-forward cycle, driving intratumoral cross-presenting dendritic cell subsets with increased TILs, emerging T cell receptor clones and, ultimately, systemic cellular immune responses.The combination of tavo and pembrolizumab was associated with a higher than expected response rate in this poorly immunogenic population. No new or unexpected toxicities were observed. Correlative analysis showed T cell infiltration with enhanced immunity paralleling the clinical activity in low cpCTL tumors.
Abstract Interleukin-12 (IL-12) is a pro-inflammatory cytokine involved in the generation of an inflammatory tumor microenvironment and is critical in eliciting a productive anti-tumor immune response. It has been investigated as an anti-cancer therapeutic using various delivery routes, but intratumoral injection of plasmid IL-12 (tavokinogene telseplasmid; TAVO) followed by electroporation is a gene therapy approach that results in more sustained production of IL-12 locally with minimal systemic immune-related toxicity. Here we show that TAVO not only provides protection in the treated triple-negative breast cancer (TNBC) lesion, but also induces a systemic, abscopal effect. Single cell RNAsequencing (scRNAseq) of infiltrating immune cells shows a significant increase in both CD4 and CD8 T cells as well as dendritic cells within the treated lesions, while simultaneously decreasing a granulocytic myeloid derived suppressor population. scRNAseq allows for a detailed look into not only the overall pathway enrichment caused by TAVO treatment, but also the specific receptor-ligand interactions occurring between cell types. A combination of these analyses revealed an enrichment in the IFN-gamma induced PDL1 pathway by TAVO, typified by an increase in the interaction between PDL1 on dendritic cells and PD1 on CD8 T cells. Further, dramatic enrichment of the CXCL9/10/11/CXCR3 axis was observed, consistent with previous studies in melanoma. Analysis of paired TCR alpha and beta chains on T cells additionally demonstrated a dramatic shift in tumor infiltrating T cell (TIL) clonality and frequency. In sum, these preclinical studies identify a signature of increased antigen presentation, T cell infiltration and expansion, and a decrease in the number of granulocytes but also a particular enhancement of the PDL1 immunosuppressive pathway following TAVO treatment. Using this signature, we focus on an in-depth analysis of 2 patients from a single arm, prospective clinical trial of TAVO monotherapy (OMS-I140) in pre-treated advanced TNBC that went on to receive anti-PD-1 as their immediate next therapy with clinical anti-tumor response. Together these data support the combination of TAVO with PD1/PDL1 inhibitors while also identifying other key pathways that may enhance responsiveness in TNBC patients for whom treatment options remain limited. Citation Format: Erika J Crosby, Hiroshi Nagata, Melinda L Telli, Chaitanya R Acharya, Irene Wapnir, Kaitlin Zablotsky, Erica Browning, Reneta Hermiz, Lauren Svenson, Donna Bannavong, Kellie Malloy, David A Canton, Chris G Twitty, Takuya Osada, Herbert Kim Lyerly. Intratumoral delivery of tavokinogene telseplasmid (plasmid IL-12) and electroporation induces an immune signature that predicts successful combination in patients [abstract]. In: Proceedings of the 2020 San Antonio Breast Cancer Virtual Symposium; 2020 Dec 8-11; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2021;81(4 Suppl):Abstract nr PS17-22.
Therapeutic treatment of large established tumors using immunotherapy has yielded few promising results. We investigated whether adoptive transfer of tumor-specific CD8(+) T cells, together with tumor-specific CD4(+) T cells, would mediate regression of large established B16BL6-D5 melanomas in lymphopenic Rag1(-/-) recipients devoid of regulatory T cells. The combined adoptive transfer of subtherapeutic doses of both TRP1-specific TCR transgenic Rag1(-/-) CD4(+) T cells and gp100-specific TCR transgenic Rag1(-/-) CD8(+) T cells into lymphopenic recipients, who received vaccination, led to regression of large (100-400 mm(2)) melanomas. The same treatment strategy was ineffective in lymphoreplete wild-type mice. Twenty-five percent of mice (15/59) had tumors recur (15-180 d postregression). Recurrent tumors were depigmented and had decreased expression of gp100, the epitope targeted by the CD8(+) T cells. Mice with recurrent melanoma had increased CD4(+)Foxp3(+) TRP1-specific T cells compared with mice that did not show evidence of disease. Importantly, splenocytes from mice with recurrent tumor were able to suppress the in vivo therapeutic efficacy of splenocytes from tumor-free mice. These data demonstrate that large established tumors can be treated by a combination of tumor-specific CD8(+) and CD4(+) T cells. Additionally, recurrent tumors exhibited decreased Ag expression, which was accompanied by conversion of the therapeutic tumor-specific CD4(+) T cell population to a Foxp3(+)CD4(+) regulatory T cell population.
Targeting regulatory T cells and other strategies to enable cancer vaccines Christopher Paustian , Shawn M. Jensen , Sarah Church , Sachin Puri , Chris Twitty , Hong-Ming Hu , Brendan D. Curti , Walter J. Urba , Raj K. Puri , and Bernard A. FoxINTRODUCTION Cancer vaccines are designed to initiate an effector response from patient lymphocytes that will both assist in clearing the tumor and retain memory of the disease so that disease recurrence is prevented. However, certain subsets of the very lymphocytes targeted by immunotherapies develop suppressor functions after being subverted by the patient's tumor. These subsets include regulatory CD4 T cells, suppressor CD8 T cells, and regulatory B cells. Many current clinical trials testing cancer vaccines include concomitant treatments designed to delete, inactivate, or convert these suppressor cells so that they no longer prevent the development of a therapeutic immune response. This chapter summarizes suppressor lymphocyte subsets and their functions, the mechanisms by which they regulate immune responses, and promising strategies that might overcome these immunologic barriers.
Toca 511 is a modified retroviral replicating vector based on Moloney γ-retrovirus with an amphotropic envelope. As an investigational cancer treatment, Toca 511 preferentially infects cancer cells without direct cell lysis and encodes an enhanced yeast cytosine deaminase that converts the antifungal drug 5-fluorocytosine to the anticancer drug, 5-fluorouracil. A panel of established human cancer cell lines, derived from glioblastoma, colon, and breast cancer tissue, was used to evaluate parameters critical for effective anticancer activity. Gene transfer, cytosine deaminase production, conversion of 5-fluorocytosine to 5-fluorouracil, and subsequent cell killing occurred in all lines tested. We observed >50% infection within 25 days in all lines and 5-fluorocytosine LD50 values between 0.02 and 6 μg/ml. Although we did not identify a small number of key criteria, these studies do provide a straightforward approach to rapidly gauge the probability of a Toca 511 and 5-fluorocytosine treatment effect in various cancer indications: a single MTS assay of maximally infected cancer cell lines to determine 5-fluorocytosine LD50. The data suggest that, although there can be variation in susceptibility to Toca 511 and 5-fluorocytosine because of multiple mechanistic factors, this therapy may be applicable to a broad range of cancer types and individuals.
Tumor cells express a number of immunosuppressive molecules that can suppress anti-tumor immune responses. Efficient delivery of small interfering RNAs to treat a wide range of diseases including cancers remains a challenge. Retroviral replicating vectors (RRV) can be used to stably and selectively introduce genetic material into cancer cells. Here, we designed RRV to express shRNA (RRV-shPDL1) or microRNA30-derived shRNA (RRV-miRPDL1) using Pol II or Pol III promoters to downregulate PDL1 in human cancer cells. We also designed RRV expressing cytosine deaminase (yCD2) and miRPDL1 for potential combinatorial therapy. Among various configurations tested, we showed that RRV-miRPDL1 vectors with Pol II or Pol III promoter replicated efficiently and exhibited sustained downregulation of PDL1 protein expression by more than 75% in human cancer cell lines with high expression of PDL1. Immunologic effects of RRV-miRPDL1 were assessed by a trans-suppression lymphocyte assay. In vitro data showed downregulation of PDL1+ tumor cells restored activation of CD8+ T cells and bio-equivalency compared to anti-PDL1 antibody treatment. These results suggest RRV-miRPDL1 may be an alternative therapeutic approach to enhance anti-tumor immunity by overcoming PDL1-induced immune suppression from within cancer cells and this approach may also be applicable to other cancer targets.
Since multiple lines of experimental and clinical data clearly identified regulatory T cells as an integral part of the immune response, these cells have become a major focus of investigation in tumor immunology. Regulatory T cells are in place to dampen ongoing immune responses and to prevent autoimmunity, but they also have profound effects in blocking therapeutic anti-tumor activity. Therefore regulatory T cells are seen as a major hurdle that must be overcome in order for cancer immunotherapy to reach its therapeutic potential. Regulatory T cells are heterogeneous with sub-populations that exhibit distinct functional features. Here we will review the individual sub-populations in regards to their mode of action and their potential impact on blocking anti-tumor immunity. Approaches to measure function and frequency of regulatory T cells in model systems and clinical trails will be discussed. Finally, we will describe possible ways to interfere with regulatory T cell-mediated immune suppression with the focus on recent pre-clinical and clinical findings.
Abstract Vaccination with MCA sarcoma cells protects from a subsequent challenge with the same, but not other MCA sarcomas. This observation of unique tumor-specific protection is a well-established paradigm (Prehn and Main 1957). We postulated that all MCA sarcomas overexpress common mutated gene products with a short half-life (SLiPs), but only the unique tumor-rejection antigens are stable enough to be cross-presented and induce anti-tumor immunity. We recently reported that with proteosomal blockade, SLiPs could be isolated in autophagic-containing (LC-3) vesicles (termed DRibble) that were efficient for cross-presentation of antigens (Li, Y. et al). Here we examined if vaccination with DRibbles from one MCA sarcoma would cross-protect from a challenge with an antigenically distinct MCA sarcoma. While whole tumor cell vaccines provide protection to unrelated tumor in 0 of 9 comparisons, DRibble vaccines provided significant (p<0.05) protection for 8 of 9 tumors (n=10-25 mice/group). Using a model system we showed that SLiPs play a critical role in providing antigen to DRibbles and that siRNA knock down of p62 reduced SLiPs and the capacity of DRibble to stimulate T cells. These results have shaped a model where polyubiquitinated SLiPs spared degradation by the proteasome, are picked up by p62 and delivered to autophagic vesicles. Used as a vaccine, these vesicles can cross-present neo-antigens capable of inducing cross-protection of chemically induced sarcomas. Supported by CA80964 (BAF), CA107243 (HH) the Chiles Foundation and the Murdoch Trust.
Clinical studies have demonstrated that local expression of the cytokine IL-12 drives interferon-gamma expression and recruits T cells to the tumor microenvironment, ultimately yielding durable systemic T cell responses. Interrogation of longitudinal biomarker data from our late-stage melanoma trials identified a significant on-treatment increase of intratumoral CXCR3 transcripts that was restricted to responding patients, underscoring the clinical relevance of tumor-infiltrating CXCR3+ immune cells. In this study, we sought to understand if the addition of DNA-encodable CXCL9 could augment the anti-tumor immune responses driven by intratumoral IL-12. We show that localized IL-12 and CXCL9 treatment reshapes the tumor microenvironment to promote dendritic cell licensing and CD8+ T cell activation. Additionally, this combination treatment results in a significant abscopal anti-tumor response and provides a concomitant benefit to anti-PD-1 therapies. Collectively, these data demonstrate that a functional tumoral CXCR3/CXCL9 axis is critical for IL-12 anti-tumor efficacy. Furthermore, restoring or amplifying the CXCL9 gradient in the tumors via intratumoral electroporation of plasmid CXCL9 can not only result in efficient trafficking of cytotoxic CD8+ T cells into the tumor but can also reshape the microenvironment to promote systemic immune response.