Limited information is available regarding domains within the epithelial Na+ channel (ENaC) which participate in amiloride binding. We previously utilized the anti-amiloride antibody (BA7.1) as a surrogate amiloride receptor to delineate amino acid residues that contact amiloride, and identified a putative amiloride binding domain WYRFHY (residues 278–283) within the extracellular domain of αrENaC. Mutations were generated to examine the role of this sequence in amiloride binding. Functional analyses of wild type (wt) and mutant αrENaCs were performed by cRNA expression in Xenopus oocytes and by reconstitution into planar lipid bilayers. Wild type αrENaC was inhibited by amiloride with aKi of 169 nm. Deletion of the entire WYRFHY tract (αrENaC Δ278–283) resulted in a loss of sensitivity of the channel to submicromolar concentrations of amiloride (Ki = 26.5 μm). Similar results were obtained when either αrENaC or αrENaC Δ278–283 were co-expressed with wt β- and γrENaC (Ki values of 155 nm and 22.8 μm, respectively). Moreover, αrENaC H282D was insensitive to submicromolar concentrations of amiloride (Ki = 6.52 μm), whereas αrENaC H282R was inhibited by amiloride with a Kiof 29 nm. These mutations do not alter ENaC Na+:K+ selectivity nor single-channel conductance. These data suggest that residues within the tract WYRFHY participate in amiloride binding. Our results, in conjunction with recent studies demonstrating that mutations within the membrane-spanning domains of αrENaC and mutations preceding the second membrane-spanning domains of α-, β-, and γrENaC alters amiloride's Ki, suggest that selected regions of the extracellular loop of αrENaC may be in close proximity to residues within the channel pore.
One of the defining characteristics of the epithelial sodium channel (ENaC) is its block by the diuretic amiloride. This study investigates the role of the extracellular loop of the α-subunit of ENaC in amiloride binding and stabilization. Mutations were generated in a region of the extracellular loop, residues 278–283. Deletion of this region, WYRFHY, resulted in a loss of amiloride binding to the channel. Channels formed from wild-type α-subunits or α-subunits containing point mutations in this region were examined and compared at the single-channel level. The open probabilities ( P o ) of wild-type channels were distributed into two populations: one with a high P o and one with a low P o . The mean open times of all the mutant channels were shorter than the mean open time of the wild-type (high- P o ) channel. Besides mutations Y279A and H282D, which had amiloride binding affinities similar to that of wild-type α-ENaC, all other mutations in this region caused changes in the amiloride binding affinity of the channels compared with the wild-type channel. These data provide new insight into the relative position of the extracellular loop with respect to the pore of ENaC and its role in amiloride binding and channel gating.
Mutations in a Cl− channel (cystic fibrosis transmembrane conductance regulator or CFTR) are responsible for the cystic fibrosis (CF) phenotype. Increased Na+ transport rates are observed in CF airway epithelium, and recent studies suggest that this is due to an increase in Na+ channel open probability (Po). The Xenopus renal epithelial cell line, A6, expresses both cAMP-activated 8-picosiemen (pS) Cl− channels and amiloride-sensitive 4-pS Na+ channels, and provides a model system for examining the interactions of CFTR and epithelial Na+ channels. A6 cells express CFTR mRNA, as demonstrated by reverse transcriptase-polymerase chain reaction and partial sequence analysis. A phosphorothioate antisense oligonucleotide, complementary to the 5′ end of the open reading frame of Xenopus CFTR, was used to inhibit functional expression of CFTR in A6 cells. Parallel studies utilized the corresponding sense oligonucleotide as a control. CFTR protein expression was markedly reduced in cells incubated with the antisense oligonucleotide. Incubation of A6 cells with the antisense oligonucleotide led to inhibition of forskolin-activated amiloride-insensitive short circuit current (Isc). After a 30-min exposure to 10 μM forskolin, 8-pS Cl− channel activity was detected in only 1 of 31 (3%) cell-attached patches on cells treated with antisense oligonucleotide, compared to 5 of 19 (26%) patches from control cells. A shift in the single-channel current-voltage relationship derived from antisense-treated cells was also consistent with a reduction in Cl− reabsorption. Both amiloride-sensitive Isc and Na+ channel Po were significantly increased in antisense-treated, forskolin-stimulated A6 cells, when compared with forskolin-stimulated controls. These data suggest that the regulation of Na+ channels by CFTR is not limited to respiratory epithelia and to epithelial cells in culture overexpressing CFTR and epithelial Na+ channels. Mutations in a Cl− channel (cystic fibrosis transmembrane conductance regulator or CFTR) are responsible for the cystic fibrosis (CF) phenotype. Increased Na+ transport rates are observed in CF airway epithelium, and recent studies suggest that this is due to an increase in Na+ channel open probability (Po). The Xenopus renal epithelial cell line, A6, expresses both cAMP-activated 8-picosiemen (pS) Cl− channels and amiloride-sensitive 4-pS Na+ channels, and provides a model system for examining the interactions of CFTR and epithelial Na+ channels. A6 cells express CFTR mRNA, as demonstrated by reverse transcriptase-polymerase chain reaction and partial sequence analysis. A phosphorothioate antisense oligonucleotide, complementary to the 5′ end of the open reading frame of Xenopus CFTR, was used to inhibit functional expression of CFTR in A6 cells. Parallel studies utilized the corresponding sense oligonucleotide as a control. CFTR protein expression was markedly reduced in cells incubated with the antisense oligonucleotide. Incubation of A6 cells with the antisense oligonucleotide led to inhibition of forskolin-activated amiloride-insensitive short circuit current (Isc). After a 30-min exposure to 10 μM forskolin, 8-pS Cl− channel activity was detected in only 1 of 31 (3%) cell-attached patches on cells treated with antisense oligonucleotide, compared to 5 of 19 (26%) patches from control cells. A shift in the single-channel current-voltage relationship derived from antisense-treated cells was also consistent with a reduction in Cl− reabsorption. Both amiloride-sensitive Isc and Na+ channel Po were significantly increased in antisense-treated, forskolin-stimulated A6 cells, when compared with forskolin-stimulated controls. These data suggest that the regulation of Na+ channels by CFTR is not limited to respiratory epithelia and to epithelial cells in culture overexpressing CFTR and epithelial Na+ channels.
We previously raised an antibody (RA6.3) by an antiidiotypic approach which was designed to be directed against an amiloride binding domain on the epithelial Na+channel (ENaC). This antibody mimicked amiloride in that it inhibited transepithelial Na+ transport across A6 cell monolayers. RA6.3 recognized a 72-kDa polypeptide in A6 epithelia treated with tunicamycin, consistent with the size of nonglycosylated Xenopus laevis αENaC. RA6.3 specifically recognized an amiloride binding domain within the α-subunit of mouse and bovine ENaC. The deduced amino acid sequence of RA6.3 was used to generate a three-dimensional model structure of the antibody. The combining site of RA6.3 was epitope mapped using a novel computer-based strategy. Organic residues that potentially interact with the RA6.3 combining site were identified by data base screening using the program LUDI. Selected residues docked to the antibody in a manner corresponding to the ordered linear array of amino acid residues within an amiloride binding domain on the α-subunit of ENaC. A synthetic peptide spanning this domain inhibited the binding of RA6.3 to αENaC. This analysis provided a novel approach to develop models of antibody-antigen interaction as well as a molecular perspective of RA6.3 binding to an amiloride binding domain within αENaC.