Abstract Cytokine-induced memory-like (CIML) NK cells generated in response to proinflammatory cytokines in vitro and in vivo can also be generated by vaccination, exhibiting heightened responses to cytokine stimulation months after their initial induction. Our previous study demonstrated that in vitro human NK cell responses to inactivated influenza virus were also indirectly augmented by very low doses of IL-15, which increased induction of myeloid cell–derived cytokine secretion. These findings led us to hypothesize that IL-15 stimulation could reveal a similar effect for active influenza vaccination and influence CIML NK cell effector functions. In this study, 51 healthy adults were vaccinated with seasonal influenza vaccine, and PBMC were collected before and up to 30 d after vaccination. Myeloid and lymphoid cell cytokine secretion was measured after in vitro PBMC restimulation with low-dose IL-15, alone or in combination with inactivated H3N2 virus; the associated NK cell response was assessed by flow cytometry. PBMC collected 30 d postvaccination showed heightened cytokine production in response to IL-15 compared with PBMC collected at baseline; these responses were further enhanced when IL-15 was combined with H3N2. NK cell activation in response to IL-15 alone (CD25) and H3N2 plus IL-15 (CD25 and IFN-γ) was enhanced postvaccination. We also observed proliferation of less-differentiated NK cells with downregulation of cytokine receptors as early as 3 d after vaccination, suggesting cytokine stimulation in vivo. We conclude that vaccination-induced “training” of accessory cells combines with the generation of CIML NK cells to enhance the overall NK cell response postvaccination.
BACKGROUND. NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells. These functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined.
Natural killer (NK) cells contribute to the effector phase of vaccine-induced adaptive immune responses, secreting cytokines and releasing cytotoxic granules. The proportion of responding NK cells varies between individuals and by vaccine, suggesting that functionally discrete subsets of NK cells with different activation requirements may be involved. Here, we have used responses to individual components of the DTP vaccine [tetanus toxoid (TT), diphtheria toxoid (DT), whole cell inactivated pertussis] to characterize the NK cell subsets involved in interleukin-2-dependent recall responses. Culture with TT, DT or pertussis induced NK cell CD25 expression and interferon-γ production in previously vaccinated individuals. Responses were the most robust against whole cell pertussis, with responses to TT being particularly low. Functional analysis of discrete NK cell subsets revealed that transition from CD56bright to CD56dim correlated with increased responsiveness to CD16 cross-linking, whereas increasing CD57 expression correlated with a loss of responsiveness to cytokines. A higher frequency of CD56dim CD57− NK cells expressed CD25 and interferon-γ following stimulation with vaccine antigen compared with CD56dim CD57+ NK cells and made the largest overall contribution to this response. CD56dim CD57int NK cells represent an intermediate functional phenotype in response to vaccine-induced and receptor-mediated stimuli. These findings have implications for the ability of NK cells to contribute to the effector response after vaccination and for vaccine-induced immunity in older individuals.
Despite evidence of augmented Natural Killer (NK) cell responses after influenza vaccination, the role of these cells in vaccine-induced immunity remains unclear. Here, we hypothesized that NK cells might increase viral clearance but possibly at the expense of increased severity of pathology. On the contrary, we found that NK cells serve a homeostatic role during influenza virus infection of vaccinated mice, allowing viral clearance with minimal pathology. Using a diphtheria toxin receptor transgenic mouse model, we were able to specifically deplete NKp46+ NK cells through the administration of diphtheria toxin. Using this model, we assessed the effect of NK cell depletion prior to influenza challenge in vaccinated and unvaccinated mice. NK-depleted, vaccinated animals lost significantly more weight after viral challenge than vaccinated NK intact animals, indicating that NK cells ameliorate disease in vaccinated animals. However, there was also a significant reduction in viral load in NK-depleted, unvaccinated animals indicating that NK cells also constrain viral clearance. Depletion of NK cells after vaccination, but 21 days before infection, did not affect viral clearance or weight loss - indicating that it is the presence of NK cells during the infection itself that promotes homeostasis. Further work is needed to identify the mechanism(s) by which NK cells regulate adaptive immunity in influenza-vaccinated animals to allow efficient and effective virus control whilst simultaneously minimizing inflammation and pathology.
Historically, human NK cells have been identified as CD3-CD56+CD16+/- lymphocytes. More recently it has been established that CD57 expression defines functionally discrete subpopulations of NK cells. On T cells, CD57 expression has been regarded as a marker of terminal differentiation and (perhaps wrongly) of anergy and senescence. Similarly, CD57 expression seems to identify the final stages of peripheral NK cell maturation; its expression increases with age and is associated with chronic infections, particularly human cytomegalovirus. However, CD57+ NK cells are highly cytotoxic and their presence seems to be beneficial in a number of non-communicable diseases. The purpose of this article is to review our current understanding of CD57 expression as a marker of NK cell function and disease prognosis, as well as to outline areas for further research.
Peripheral blood lymphocytes from donors previously unexposed to malaria parasites proliferate in vitro when stimulated with whole parasitized red blood cells of several different strains of Plasmodium falciparum. Here we show that both cells enriched for both memory (CD45R0+) and naïve (CD45R0−) phenotype can respond. Cells involved In these responses occur at frequencies similar to those observed for recall antigens such as tetanus toxoid but at lower frequencies than observed for the superantigens staphylococcal enterotoxin B or the mitogenic lectin phytohemagglutinin (PHA). Proliferation is inhibited by antibodies to class II MHC and to CD3 molecules. Stimulation of purified CD45R0− T cells by whole parasitized red blood cells for 6 days results In the generation of a large proportion of γδ T cell blasts of Vγ 9Vδ2 TCR phenotype and in the acquisition of the CD45R0 molecule within the blast cell population. The rapid generation of a vigorous primary in vitro γδ T cell response by malarial parasites may reflect the situation during primary malarial Infection.
Programmed death receptor 1 (PD-1) is an important marker of T-cell exhaustion during HIV-1 infection. Natural killer (NK) cells lose their functional capacity during HIV-1 infection, and PD-1 is expressed on NK cells during other chronic viral and bacterial infections. Here, PD-1 expression was increased on NK cells from both viremic and aviremic HIV-1-seropositive individuals, compared to seronegative controls. However, PD-1 was expressed on a small subset of NK cells and at lower frequency than that observed for CD8+ T cells. PD-1 was also induced on a minor fraction of NK cells and CD8+ T cells after long-term culture with IL-15. Raised levels of PD-1 were associated with limited NK cell proliferation, which may have consequences for their maintenance during chronic HIV-1 infection.