Monocarboxylate transporter 8 (MCT8) facilitates T3 uptake into cells. Mutations in MCT8 lead to Allan-Herndon-Dudley syndrome (AHDS), which is characterized by severe psychomotor retardation and abnormal thyroid hormone profile. Nine uncharacterized MCT8 mutations in Japanese patients with severe neurocognitive impairment and elevated serum T3 levels were studied regarding the transport of T3. Human MCT8 (hMCT8) function was studied in wild-type (WT) or mutant hMCT8-transfected human placental choriocarcinoma cells (JEG3) by visualizing the locations of the proteins in the cells, detecting specific proteins, and measuring T3 uptake. We identified 6 missense (p.Arg445Ser, p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, and p.Gly312Arg), 2 frameshift (p.Arg355Profs*64 and p.Tyr550Serfs*17), and 1 deletion (p.Pro561del) mutation(s) in the hMCT8 gene. All patients exhibited clinical characteristics of AHDS with high free T3, low-normal free T4, and normal-elevated TSH levels. All tested mutants were expressed at the protein level, except p.Arg355Profs*64 and p.Tyr550Serfs*17, which were truncated, and were inactive in T3 uptake, excluding p.Arg445Ser and p.Pro561del mutants, compared with WT-hMCT8. Immunocytochemistry revealed plasma membrane localization of p.Arg445Ser and p.Pro561del mutants similar with WT-hMCT8. The other mutants failed to localize in significant amount(s) in the plasma membrane and instead localized in the cytoplasm. These data indicate that p.Arg445Ser and p.Pro561del mutants preserve residual function, whereas p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, p.Gly312Arg, p.Arg355Profs*64, and p.Tyr550Serfs*17 mutants lack function. These findings suggest that the mutations in MCT8 cause loss of function by reducing protein expression, impairing trafficking of protein to plasma membrane, and disrupting substrate channel.
Abstract Carbofuran is a carbamate pesticide, widely used in agricultural practices to increase crop productivity. In mammals, carbofuran is known to cause several untoward effects, such as apoptosis in the hippocampal neuron, oxidative stress, loss of memory and chromosomal anomalies. Most of these effects are implicated with cellular senescence. Therefore, the present study aimed to determine the effect of carbofuran on cellular senescence and biological ageing. Spinster homolog 1 (Spns1) is a transmembrane transporter, regulates autolysosomal biogenesis and plays a role in cellular senescence and survival. Using senescence‐associated β‐galactosidase staining, we found that carbofuran accelerates the cellular senescence in spns1 mutant zebrafish. The yolk opaqueness, a premature ageing phenotype in zebrafish embryos, was accelerated by carbofuran treatment. In the survival study, carbofuran shortened the life span of spns1 mutant zebrafish. Autophagy is the cellular lysosomal degradation, usually up‐regulated in the senescent cells. To know the impact of carbofuran exposure on autophagy progress, we established a double‐transgenic zebrafish line, harbouring EGFP‐tagged LC3‐II and mCherry‐tagged Lamp1 on spns1 mutant background, whereas we found, carbofuran exposure synergistically accelerates autolysosome formation with insufficient lysosome‐mediated degradation. Our data collectively suggest that carbofuran exposure synergistically accelerates the cellular senescence and affects biological ageing in spns1 defective animals.
Aims:The genetic aspect of degenerative joint disease (DJD) of the temporomandibular joint is poorly understood. The prevalence of the estrogen receptor alpha (ER-alpha) gene polymorphism in patients with and without DJD using xbal and pvull restriction fragment length polymorphisms (RFLPs) was studied.Methodology:DNA samples from 42 DJD+ and 36 DJD− subjects were amplified. A 346-base pair long ER-alpha gene fragment containing the two sites of polymorphism in intron 1 was analyzed for xbal and pvull RFLP. Statistical analysis was carried out using Fisher's exact test and two-group t-test.Results:Five different ER-alpha genotypes were found in both groups. These were PXPX, pxpx, pxPX, PxPX, and pxPx.Discussion:There was a higher number of pxpx and pxPX genotypes in the DJD+ samples compared to the DJD− group, which suggests the presence of polymorphism possibly modulates the ER-alpha activity in bone and contributes to the degenerative process in the joint.
Background. There are limited studies of von Willebrand factor (vWF) and thrombotic stroke, escpecially the relationship between level of vWF and functional neurological deficit. Objective. To determine the difference between functional neurological deficit; measured by the NIHSS scale with the vWF level. Methods. Design study was cross sectional, sampling by consecutive admission according to inclusion and exclusion criteria. Blood samples were taken for vWF measurement. Patients are divided into two categories, low vWF level and high vWF levels. Deficit functional neurologist was measured by NIHSS scale.Results. The results were analyzed by chi square. From 80 patients, the result compares the level of NIHSS scale. In grup with mild NIHSS and low vWF levels (50 %) higher than grup with mild NIHSS and high vWF levels (27,27 %). In other side, grup with moderate NIHSS and low vWF levels (50 %) lower than grup with moderate NIHSS and high vWF levels (72,73 %). The difference is not significant statistically (p=0.067).Conclusion. There was no difference between deficit functional neurologist measured by NIHSS scale with von Willebrand factor levels in acute thrombotic stroke patients.
In this study, the antioxidative fraction of white mulberry (Morus alba) was found to have an apotogenic effect on Ehrlich's ascites carcinoma cell-induced mice (EAC mice) that correlate with upregulated p53 and downregulated NFκB signaling. The antioxidant activities and polyphenolic contents of various mulberry fractions were evaluated by spectrophotometry and the ethyl acetate fraction (EAF) was selected for further analysis. Strikingly, the EAF caused 70.20% tumor growth inhibition with S-phase cell cycle arrest, normalized blood parameters including red/white blood cell counts and suppressed the tumor weight of EAC mice compared with untreated controls. Fluorescence microscopy analysis of EAF-treated EAC cells revealed DNA fragmentation, cell shrinkage, and plasma membrane blebbing. These characteristic morphological features of apoptosis influenced us to further investigate pro- and anti-apoptotic signals in EAF-treated EAC mice. Interestingly, apoptosis correlated with the upregulation of p53 and its target genes PARP-1 and Bax, and also with the down-regulation of NFκB and its target genes Bcl-2 and Bcl-xL. Our results suggest that the tumor- suppressive effect of the antioxidative fraction of white mulberry is likely due to apoptosis mediated by p53 and NFκB signaling.
Tick saliva is critically important for continuous attachment to the host, blood feeding for days, and transmission of tick-borne pathogens. To characterize the patterns of inflammatory cytokine gene expression during its attachment and blood sucking time, peripheral blood samples of rabbits infested with Haemaphysalis longicornis ticks were collected at different intervals. Blood histamine concentration was evaluated as well as gene encoding IFN-γ, TNF-α, IL-2, IL-6, IL-4, and IL-10 were compared with non-infested rabbits. Blood histamine concentration of tick-infested rabbits during fast feeding time was significantly higher than that of non-infested rabbits. In both nymph and adult tick infested rabbits, expression of TNF-α and IFN-γ genes were decreased significantly (P<0.05), while expression of IL-4, IL-6, and IL-10 were increased 1.3 to 7 folds in adult infested rabbits with the exception of IL-6 that was significantly (P<0.05) decreased in nymph infested rabbits. IL-2 was not expressed in either nymph or adult infestation. H. longicornis saliva is capable of modulate host responses through a complex correlation with histamine and Th1, Th2 mediated cytokines that suppress the inflammatory responses directed toward inflammatory mediators introduced into the host during tick feeding.
Withdrawal Statement The authors have withdrawn their manuscript owing to for more improvement in our research work and need to revise our manuscript . Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
N-Glycanase 1 (NGLY1) deficiency is a rare and complex genetic disorder. Although recent studies have shed light on the molecular underpinnings of NGLY1 deficiency, a systematic characterization of gene and protein expression changes in patient-derived cells has been lacking. Here, we performed RNA-sequencing and mass spectrometry to determine the transcriptomes and proteomes of 66 cell lines representing four different cell types derived from 14 NGLY1 deficient patients and 17 controls. Although NGLY1 protein levels were up to 9.5-fold downregulated in patients compared with parents, residual and likely non-functional NGLY1 protein was detectable in all patient-derived lymphoblastoid cell lines. Consistent with the role of NGLY1 as a regulator of the transcription factor Nrf1, we observed a cell type-independent downregulation of proteasomal genes in NGLY1 deficient cells. In contrast, genes involved in ribosome biogenesis and mRNA processing were upregulated in multiple cell types. In addition, we observed cell type-specific effects. For example, genes and proteins involved in glutathione synthesis, such as the glutamate-cysteine ligase subunits GCLC and GCLM, were downregulated specifically in lymphoblastoid cells. We provide a web application that enables access to all results generated in this study at https://apps.embl.de/ngly1browser. This resource will guide future studies of NGLY1 deficiency in directions that are most relevant to patients.