Infertility is a fertility disorder caused by various factors, with lipid metabolism playing a crucial role in its development. The cardiometabolic index (CMI), which combines blood lipids (TG/HDL-C) and obesity-related parameters (WHtR), is a new quantitative indicator. This study used NHANES data to investigate the relationship between CMI and the incidence of infertility.
Hepatoblastoma is a rare disease. Its etiology remains obscure. No epidemiological reports have assessed the relationship of High Mobility Group A2 (HMGA2) single nucleotide polymorphisms (SNPs) with hepatoblastoma risk. This case-control study leads as a pioneer to explore whether HMGA2 SNPs (rs6581658 A>G, rs8756 A>C, rs968697 T>C) could impact hepatoblastoma risk.We acquired samples from 275 hepatoblastoma cases and 1018 controls who visited one of five independent hospitals located in the different regions of China. The genotyping of HMGA2 SNPs was implemented using the PCR-based TaqMan method, and the risk estimates were quantified by odds ratios (ORs) and 95% confidence intervals (CIs).In the main analysis, we identified that rs968697 T>C polymorphism was significantly related to hepatoblastoma risk in the additive model (adjusted OR=0.73, 95% CI=0.54-0.98, P=0.035). Notably, participants carrying 2-3 favorable genotypes had reduced hepatoblastoma risk (adjusted OR=0.71, 95% CI=0.52-0.96, P=0.028) in contrast to those carrying 0-1 favorable genotypes. Furthermore, stratification analysis revealed a significant correlation between rs968697 TC/CC and hepatoblastoma risk for males and clinical stage I+II. The existence of 2-3 protective genotypes was correlated with decreased hepatoblastoma susceptibility in children ≥17 months old, males, and clinical stage I+II cases, when compared to 0-1 protective genotype.To summarize, these results indicated that the HMGA2 gene SNPs exert a weak influence on hepatoblastoma susceptibility. Further validation of the current conclusion with a larger sample size covering multi-ethnic groups is warranted.
Kawasaki disease (KD) is a systemic vasculitis that is caused by immunological dysregulation in children exposed to pathogens like Epstein-Barr virus (EBV). Myocardial ischemia or infarction due to coronary artery lesions (CALs) might be lethal. However, it is unclear how pathogens, immunomodulation, and CALs interact, particularly in KD patients co-infected with the most widespread virus, EBV.We investigated pathogen carriage and fundamental clinical data in 281 KD patients. Immunological differences between CALs and non-CALs in KD patients under different conditions were analyzed. Then, the effect of infection by different pathogens on the immune response was excluded, and most EBV co-infected KD patients were included to assess the incidence of CALs, the level of immune modulation, and regulatory mechanisms in different EBV infection states.Our results showed multiple pathogenic infections occur in KD patients, with EBV being the most prevalent. The incidence of CALs in the EBV-DNA (+) acute infection group, EBV-DNA (-) acute infection group, and EBV latent infection group was 0 (0/6), 27.27% (3/11) and 41.67% (10/24), respectively. The two groups were younger and had increased IL-6 levels and B cells, decreasing CD8+ T cells than the EBV-DNA (+) acute infection group. Interestingly, the increased B cells were not associated with immunoglobulin release. Additionally, these patients down-regulated α7 nicotinic acetylcholine receptor (α7nAChR) and downstream molecule PI3K/AKT/mTOR while activating the NF-κB.Patients with different EBV infection statuses exhibit different incidences of CALs. In acute EBV-DNA (-) infected and latent EBV-infected patients, the number of CD8+ T cells decreased and downregulated CD8+ T cells' α7nAChR and PI3K/AKT/mTOR, which may associate with CALs, while the expression of NF-κB and the pro-inflammatory factor IL-6 was upregulated by inhibiting the anti-inflammatory molecule α7nAChR.
Protein S is an anticoagulant plasma protein, functioning as a cofactor to activated protein C in the regulation of blood coagulation. In addition, protein S forms a complex with the complement regulatory protein, C4b-binding protein. Protein S is unique among the vitamin K-dependent proteins in being structurally similar to androgen binding proteins. Protein S immunoreactivity was demonstrated in Leydig cells of human testis. In Northern blotting experiments, the presence of protein S mRNA in human testis tissue could be shown. In situ hybridization experiments localized protein S mRNA to the Leydig cells, demonstrating transcription of the protein S gene in these cells. Five protein S clones were isolated from a human testis cDNA library, partially sequenced and characterized by restriction enzyme mapping. Three unique clones contained information for the entire coding sequence and approximately two-thirds of the 5′ and 3′ non-coding sequences. The results indicate the nucleotide sequences of testis and liver protein S mRNA to be identical. No binding of androgens to protein S could be demonstrated. In conclusion, we demonstrate the presence of protein S immunoreactivity as well as protein S mRNA in the Leydig cells of human testis. These results suggest local synthesis of protein S in Leydig cells of human testis which may be functionally important for local anticoagulation.
Abstract Rationale: Wiskott–Aldrich syndrome (WAS) is a rare X-linked recessive disease characterized by thrombocytopenia, small platelets, eczema, immunodeficiency, and an increased risk of autoimmunity and malignancies. X-linked thrombocytopenia (XLT), the milder phenotype of WAS, is always limited to thrombocytopenia with absent or slight infections and eczema. Here, we illustrated the clinical and molecular characteristics of 2 unrelated patients with WAS from Chinese minorities. Patient concerns: Patient 1, a 13-day-old male newborn of the Chinese Lahu minority, showed a classic WAS phenotype, including thrombocytopenia, small platelets, buttock eczema, and recurrent infections. Patient 2, an 8-year-and 8-month-old boy of the Chinese Zhuang minority, presented an XLT phenotype without eczema and repeated infections. Diagnosis: Next-generation sequencing was performed to investigate the genetic variations. Flow cytometry was used to quantify the expression of WAS protein and analyze the lymphocyte subsets. A novel frameshift WAS mutation (c.927delC, p.Q310Rfs∗135) and a known nonsense WAS mutation (c.1090C>T, p.R364X) were identified in Patient 1 and Patient 2, respectively. Both patients were confirmed to have WAS protein deficiency, which was more severe in Patient 1. Meanwhile, the analysis of lymphocyte subsets revealed an abnormality in Patient 1, but not in Patient 2. Combined with the above clinical data and genetic characteristics, Patient 1 and Patient 2 were diagnosed as classic WAS and XLT, respectively. In addition, many miliary nodules were accidentally found in abdominal cavity of Patient 2 during appendectomy. Subsequently, Patient 2 was confirmed with pulmonary and abdominal tuberculosis through further laboratory and imaging examinations. To our knowledge, there have been only a few reports about WAS/XLT with tuberculosis. Interventions: Both patients received anti-infection therapy, platelet transfusions, and intravenous immunoglobulins. Moreover, Patient 2 also received antituberculosis treatment with ethambutol and amoxicillin-clavulanate. Outcomes: The clinical symptoms and hematological parameters of these 2 patients were significantly improved. Regrettably, both patients discontinued the treatment for financial reasons. Lessons: Our report expands the pathogenic mutation spectrum of WAS gene and emphasizes the importance of molecular genetic testing in diagnosing WAS. Furthermore, researching and reporting rare cases of WAS from different populations will facilitate diagnosis and treatment of this disease.
To evaluate a new human papillomavirus (HPV) genotyping technique based on gene chip technology (HPG) for HPV genotyping and its clinical efficacy.HPV genotyping (HPG) test, hybrid capture II (HC2) test and DNA sequencing assay were performed in 151 patients aged 20-75 years with diagnosis of chronic cervicitis or abnormal vaginal bleeding. The cervical specimens were collected from cervical epithelium. All the cervical samples were analyzed by the HPG test, HC2 test and DNA sequencing. The clinical efficacy of the HPG test was analyzed.The consistent rate between HPG test and HC2 test was 87.42% (kappa = 0.75, P < 0.05). When DNA sequencing assay was regarding as the final test result, the sensitivity and specificity of HPG test for high risk HPV were 100% and 96.49%, respectively. The consistent rate between HPG test and direct DNA sequencing was 98.70% (kappa = 0.97, P < 0.05). The most common six HPV genotypes detected by HPG test were HPV 16 (13.25%), 58 (11.92%), 52 (11.92%), 31 (6.62%) 39 (5.96%), 33 (5.96%) in descending order of frequency. The incidence of multiple-types infection detected by HPG test was 23.84%.HPG test is a rapid and accurate test for HPV genotyping which could detect 29 types of HPV infection at one time. It is suitable for cervical HPV infection screening in clinic.
Abstract Background: To evaluate and compare the efficiency of a self-designed inspiratory impedance threshold device in cardiopulmonary resuscitation (CPR) in the porcine models of cardiac arrest established by three approaches. Methods: Twenty healthy pigs were randomly assigned into the control group (n=5), model 1 (n=5), model 2 (n=5) and model 3 (n=5) groups. Following anesthesia induction, endotracheal tube was inserted and connected to the anesthesia machine. In the three model groups, pigs received intravenous injection of ketamine (model 1), MgSO4 (model 2) and KCl (model 3), and subsequently pig models of cardiac arrest were established. Manual closed-chest CPR was performed at 80 bpm with the self-designed inspiratory impedance threshold device in the model groups and without this device in the control group. After 2-, 6- and 10-min CPR, the heart rate and hemodynamic parameters including arterial blood pressure, blood oxygen saturation, end-diastolic volume and cardiac output were quantitatively measured. The Esophageal echocardiography and blood-gas analyses were performed. Results: After CPR, the mean arterial blood pressure, end-diastolic volume and cardiac output in three model groups were significantly higher compared with those in the control group (all P<0.05). In model 2 group, the stroke volume, cardiac output, end-diastolic volume, SPO2 and PCO2 levels and blood-gas parameters were the highest among three model groups (all P<0.05). Conclusions: The self-invented inspiratory impedance threshold device yields the highest efficiency in the porcine model of cardiac arrest established by intravenous infusion of MgSO4 by increasing the cardiac output during CPR compared with the remaining two pig models.