Abstract A single‐step solution‐based strategy is used to obtain 2D Janus‐like free‐standing ultrathin nanosheets build from two structurally unrelated species, that is, polyoxomolybdate (POM) and CoO. A controlled 2D‐to‐1D morphological transition was achieved by judiciously adjusting the solvent choice. These POM‐CoO heterostructures can behave as an ideal catalyst for the epoxidation of styrene. Benefiting from their amphiphilic nature, these 2D POM‐CoO nanosheets have also been used as surfactant to emulsify immiscible solvents. It is anticipated that structurally diverse polyoxometalates will offer promise as design elements for variety of structurally and compositionally tunable van der Waals integrated heteromaterials having a broad range applications.
Medicinal plants have been widely used for therapeutic purposes for a long time, but they have been found to have some major issues such as low water solubility and bioavailability. In the present study, the nanoformulation of Curcuma longa L. plant extract was prepared to enhance its dissolution potential and biological activities. For the formulation of the nanosuspension, an ethanolic extract of C. longa was prepared through Soxhlet extraction using the nanoformulation technique. The nanosuspensions were formulated using four different stabilizers, namely sodium lauryl sulfate (SLS), hydroxy propyl methyl cellulose (HPMC), poly(vinyl alcohol) (PVA), and polysorbate-80 (P-80). The scanning electron microscopy (SEM), polydispersity index, and ζ potential were used for characterization of the nanoformulation. Among all of these, the surfactant stabilizer SLS was found to be the best. The average particle size of the selected optimized nanosuspension was found to be 308.2 nm with a polydispersity index (PDI) value of 0.330. The ζ potential value of the optimized nanosuspension was recorded at -33.3 mV. The SEM image indicated that the particles were slightly agglomerated, which may have occurred during lyophilization of the nanosuspension. The highest dissolution rate recorded at pH = 7 was 192.32 μg/mL, which indicates pH = 7 as the most appropriate condition for the dissolution of the C. longa nanosuspension. The antioxidant, antimicrobial, and antifungal activities of the optimized nanosuspension were also determined with regard to the coarse plant extract. The study findings suggested that the nanoprecipitation approach helps in enhancing the dissolution potential and biological activities of C. longa root extract.
The study presents complementary experiments and quantum chemical DFT computations to reveal the molecular-level interactions of an advanced nanomaterial, porphyrin aluminum metal–organic framework (compound 2), with the volatile organic sulfur compound diethyl sulfide (DES). First, the intermolecular host–guest interactions during the sorption of DES were explored under dynamic conditions, using the vapor of DES in flowing air. The in situ time-dependent ATR-FTIR spectroscopy in a controlled atmosphere was significantly improved though the use of a new facilely built spectroscopic mini-chamber. The binding site of DES in compound 2 involves the μ(O–H) and COO- groups of the linker of the sorbent. Further, the chemical kinetics of the sorption of DES was investigated, and it follows the Langmuir adsorption kinetic model. That is, depending on the time interval, the process obeys either the pseudo-first- or pseudo-second-order rate law. For the Langmuir adsorption of the pseudo-first order, the rate constant is robs = 0.165 ± 0.017 min−1. Next, the interaction of compound 2 with the saturated vapor of DES yields the adsorption complex compound 3 [Al-MOF-TCPPH2]2(DES)7. The adsorbed amount of DES is very large at 36.5 wt.% or 365 mg/g sorbent, one of the highest values reported on any sorbent. The molecular modes of bonding of DES in the complex were investigated through quantum chemical DFT computations. The adsorption complex was facilely regenerated by gentle heating. The advanced functional material in this work has significant potential in the environmental remediation of diethyl sulfide and related volatile organic sulfur compounds in air, and it is an interesting target of mechanistic studies of sorption.
Rapidly detecting potentially toxic ions such as cyanide is paramount to maintaining a sustainable and environmentally friendly ecosystem for living organisms. In recent years, molecular sensors have been developed to detect cyanide ions, which provide a naked-eye or fluorometric response, making them an ideal choice for cyanide sensing. Nanosensors, on the other hand, have become increasingly popular over the last two decades due water solubility, quick reaction times, environmental friendliness, and straightforward synthesis. Researchers have designed many nanosensors and successfully utilized them for the detection of cyanide ions in various environmental samples. The majority of these sensors use gold and silver-based nanosensors because cyanide ions have a high affinity for these metals ions and coordinate through covalent bonds. These metal nanoparticles are typically combined or coated with fluorescent materials, which quench their fluorescence. However, adding cyanide ions etches out the metal nanoparticles, restoring their fluorescence/color. This principle has been followed by most nanosensors used for cyanide ion sensing. In this review, different nanosensors and their sensing mechanisms are discussed in relation to cyanide ions. The primary purpose is to compare the sensing abilities of these sensors, mainly their sensitivity, advantages, application and to find out research gaps for future work. In this review paper, the development made in nanosensors in the last thirteen years (2010-2023) was discussed and the nanosensors for cyanide ions were compared with molecular sensors while the nanosensors with the excellent limit of detection were highlighted.
Abstract A single‐step solution‐based strategy is used to obtain 2D Janus‐like free‐standing ultrathin nanosheets build from two structurally unrelated species, that is, polyoxomolybdate (POM) and CoO. A controlled 2D‐to‐1D morphological transition was achieved by judiciously adjusting the solvent choice. These POM‐CoO heterostructures can behave as an ideal catalyst for the epoxidation of styrene. Benefiting from their amphiphilic nature, these 2D POM‐CoO nanosheets have also been used as surfactant to emulsify immiscible solvents. It is anticipated that structurally diverse polyoxometalates will offer promise as design elements for variety of structurally and compositionally tunable van der Waals integrated heteromaterials having a broad range applications.