GAP1(IP4BP) is a member of the GAP1 family of Ras GTPase-activating proteins (GAPs) that includes GAP1(m), CAPRI, and RASAL. Composed of a central Ras GAP-related domain (RasGRD), surrounded by amino-terminal C2 domains and a carboxy-terminal PH/Btk domain, these proteins, with the notable exception of GAP1(m), possess an unexpected arginine finger-dependent GAP activity on the Ras-related protein Rap1 (S. Kupzig, D. Deaconescu, D. Bouyoucef, S. A. Walker, Q. Liu, C. L. Polte, O. Daumke, T. Ishizaki, P. J. Lockyer, A. Wittinghofer, and P. J. Cullen, J. Biol. Chem. 281:9891-9900, 2006). Here, we have examined the mechanism through which GAP1(IP4BP) can function as a Rap1 GAP. We show that deletion of domains on either side of the RasGRD, while not affecting Ras GAP activity, do dramatically perturb Rap1 GAP activity. By utilizing GAP1(IP4BP)/GAP1(m) chimeras, we establish that although the C2 and PH/Btk domains are required to stabilize the RasGRD, it is this domain which contains the catalytic machinery required for Rap1 GAP activity. Finally, a key residue in Rap1-specific GAPs is a catalytic asparagine, the so-called asparagine thumb. By generating a molecular model describing the predicted Rap1-binding site in the RasGRD of GAP1(IP4BP), we show that mutagenesis of individual asparagine or glutamine residues that lie in close proximity to the predicted binding site has no detectable effect on the in vivo Rap1 GAP activity of GAP1(IP4BP). In contrast, we present evidence consistent with a model in which the RasGRD of GAP1(IP4BP) functions to stabilize the switch II region of Rap1, allowing stabilization of the transition state during GTP hydrolysis initiated by the arginine finger.
Sorting nexins (SNXs) are key regulators of the endosomal network. In designing an RNAi-mediated loss-of-function screen, we establish that of 30 human SNXs only SNX3, SNX5, SNX9, SNX15 and SNX21 appear to regulate EGF receptor degradative sorting. Suppression of SNX15 results in a delay in receptor degradation arising from a defect in movement of newly internalised EGF-receptor-labelled vesicles into early endosomes. Besides a phosphatidylinositol 3-phosphate- and PX-domain-dependent association to early endosomes, SNX15 also associates with clathrin-coated pits and clathrin-coated vesicles by direct binding to clathrin through a non-canonical clathrin-binding box. From live-cell imaging, it was identified that the activated EGF receptor enters distinct sub-populations of SNX15- and APPL1-labelled peripheral endocytic vesicles, which do not undergo heterotypic fusion. The SNX15-decorated receptor-containing sub-population does, however, undergo direct fusion with the Rab5-labelled early endosome. Our data are consistent with a model in which the EGF receptor enters the early endosome following clathrin-mediated endocytosis through at least two parallel pathways: maturation through an APPL1-intermediate compartment and an alternative more direct fusion between SNX15-decorated endocytic vesicles and the Rab5-positive early endosome.
Ras proteins are binary switches that, by cycling between inactive GDP-bound and active GTP-bound conformations, regulate multiple cellular signalling pathways including those that control cell growth, differentiation and survival. Approximately 30% of all human tumours express Ras-containing oncogenic mutations that lock the protein into a constitutively active conformation. The activation status of Ras is regulated by two groups of proteins: GEFs (guanine nucleotide-exchange factors) bind to Ras and enhance the exchange of GDP for GTP, thereby activating it, whereas GAPs (GTPase-activating proteins) inactivate Ras by binding to the GTP-bound form and enhancing the hydrolysis of the bound nucleotide back to GDP. In this review, we focus on a group of key regulators of Ras inactivation, the GAP1 family of Ras-GAPs. The members of this family are GAP1m, GAP1IP4BP, CAPRI (Ca2+-promoted Ras inactivator) and RASAL (Ras-GTPase-activating-like protein) and, as we will discuss, they are emerging as important modulators of Ras and small GTPase signalling that are subject to regulation by a diverse array of events and second messenger signals.