A biogenetic synthesis of biflavonoids, lophirone B and lophirone C, was achieved by enzymatic oxidation of the corresponding chalcone.Biflavonoids, lophirone B (1) and lophirone C (2), were reported as the constituents of an African medicinal plant, Lophira lanceolata (Ochnaceae), and their biogeneses were also discussed as shown in
SIRT1 is a mammalian ortholog of the yeast enzyme Sir2, which is an NAD + -dependent deacetylase of histones, p53, FOXO, NF-κB, PGC-1α, and other transcription factors. The Sir2 protein is reported as a longevity protein in yeast. Resveratrol, a polyphenol isolated from various types of plant families, particularly the Vitaceae family, is a known naturally occurring SIRT1 activator. In this study, we evaluated the effects of four types of resveratrol dimers and four types of tetramers isolated from vitaceous plants, and one type of resveratrol tetramer isolated from a dipterocarpaceous plant on purified human SIRT1 enzyme activity. Of the resveratrol dimers examined, (+)-ε-viniferin and pallidol exhibited no effect on SIRT1 enzyme activity, whereas (+)-ampelopsin B and (-)-ampelopsin F showed inhibitory activity on SIRT1. However, all the resveratrol tetramers examined, i.e., (+)-vitisin A, (-)-vitisin B, (+)-hopeaphenol, (-)-hopeaphenol, and (-)-isohopeaphenol markedly inhibited the human SIRT1 enzyme activity. (+)-Hopeaphenol exhibited the most potent inhibitory activity, which was comparable with that exhibited by a known SIRT1 inhibitor suramin. Since SIRT1 inhibitors reportedly possess anticancer activity, (+)-hopeaphenol and other resveratrol oligomers can be used as a seed compound for anticancer drugs.
We previously established the murine adrenal chromaffin cell line tsAM5D, which was immortalized with the temperature-sensitive simian virus 40 large T-antigen. tsAM5D cells have the capacity to differentiate into neuron-like cells in response to neurotrophic factors when the culture temperature is shifted from 33 to 39 degrees C. In this model system, the temperature shift in the absence of neurotrophic factors led to cell death. Hoechst staining analysis revealed that typical apoptotic nuclei appeared in a time-dependent manner after the temperature shift. Upon shifting to 39 degrees C, the degradation of T-antigen was accompanied by the transcriptional activation of p53 protein. Among the p53 target genes, death receptor 5 (DR5), which is the receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), showed the highest level of induction. Interestingly, TRAIL-neutralizing antibody protected tsAM5D cells from the temperature shift-induced apoptotic cell death by blocking the activation of caspase-8 and -3, indicating the involvement of TRAIL-mediated death signaling in the temperature shift-induced apoptosis. Glial cell line-derived neurotrophic factor (GDNF) inhibited the TRAIL-mediated activation of caspase-8 in tsAM5D cells exposed to 39 degrees C and cooperated with basic fibroblast growth factor and ciliary neurotrophic factor. Interestingly, the temperature shift induced oligomerization of DR5, which is the earliest process necessary for transduction of the death signal. This oligomerization was inhibited by treatment with GDNF plus ciliary neurotrophic factor but not by that with GDNF alone or GDNF plus basic fibroblast growth factor. These results are discussed with respect to the intracellular mechanism underlying the protective function of neurotrophic factors against TRAIL-mediated death signaling.
Abstract Objectives The aim of this study was to examine the mechanism underlying the inhibitory effect of our synthesized carbazolequinone derivatives on nitric oxide (NO) production in activated macrophages. Methods Lipopolysaccharide (LPS) and interferon-γ (IFN-γ)-stimulated RAW264.7 macrophages were treated with carbazolequinone derivatives. The NO and prostaglandin E2 (PGE2) levels in cell culture supernatants fractions were measured by Greiss and ELISA assay, respectively. The expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was assessed by the real-time RT-PCR method. Nuclear factor kappa B (NF-κB) activation was detected by an NF-κB-dependent luciferase reporter assay. Key findings Our synthesized carbazolequinone derivatives (7-methoxy-2-methylcarbazole-1,4-quinone, 6-methoxy-2-methylcarbazole-1,4-quinone and 6-chloro-2-methylcarbazole-1,4-quinone) significantly inhibited LPS/IFN-γ-induced NO production and iNOS expression in RAW264.7 cells. They also inhibited the LPS/IFN-γ-mediated induction of COX-2 expression and PGE2 production. In addition, the LPS/IFN-γ-induced transcription activity of NF-κB was attenuated. Using the RAW264.7-tsAM5NE co-culture system, we found that these carbazolequinone derivatives protected neuronally differentiated tsAM5NE cells from NO-induced cell death by inhibiting the production of NO. Conclusions These results suggest that the three carbazolequinone derivatives inhibit LPS/IFN-γ-induced NO production via iNOS and COX-2 downregulation due to NF-κB inhibition. Therefore, these three carbazolequinone derivatives may be useful for developing a new drug against NO-mediated neurodegenerative diseases.