ABSTRACT We have identified four synthetic compounds (DFD-VI-15, BD-I-186, DFD-V-49, and DFD-V-66) from an amino acid-derived 1,2-benzisothiazolinone (BZT) scaffold that have reasonable MIC 50 values against a panel of fungal pathogens. These compounds have no structural similarity to existing antifungal drugs. Three of the four compounds have fungicidal activity against Candida spp., Cryptococcus neoformans , and several dermatophytes, while one is fungicidal to Aspergillus fumigatus . The kill rates of our compounds are equal to those in clinical usage. The BZT compounds remain active against azole-, polyene-, and micafungin-resistant strains of Candida spp. A genetics-based approach, along with phenotype analysis, was used to begin mode of action (MOA) studies of one of these compounds, DFD-VI-15. The genetics-based screen utilized a homozygous deletion collection of approximately 4,700 Saccharomyces cerevisiae mutants. We identified mutants that are both hypersensitive and resistant. Using FunSpec, the hypersensitive mutants and a resistant ace2 mutant clustered within a category of genes related directly or indirectly to mitochondrial functions. In Candida albicans , the functions of the Ace2p transcription factor include the regulation of glycolysis. Our model is that DFD-VI-15 targets a respiratory pathway that limits energy production. Supporting this hypothesis are phenotypic data indicating that DFD-VI-15 causes increased cell-reactive oxidants (ROS) and a decrease in mitochondrial membrane potential. Also, the same compound has activity when cells are grown in a medium containing glycerol (mitochondrial substrate) but is much less active when cells are grown anaerobically.
We report a case of disseminated Scedosporium/Pseudallescheria infection due to Pseudallescheria boydii sensu stricto after lung transplantation in a patient with cystic fibrosis. Dissemination occurred under voriconazole. Despite surgery and combination therapy with voriconazole, caspofungin, and terbinafine, the patient died 8 months after transplantation. Previously reported cases are reviewed.
Diagnostics are fundamental for successful outbreak containment. In this supplement, 'Diagnostic preparedness for WHO Blueprint pathogens', we describe specific diagnostic challenges presented by selected priority pathogens most likely to cause future epidemics. Some challenges to diagnostic preparedness are common to all outbreak situations, as highlighted by recent outbreaks of Ebola, Zika and yellow fever. In this article, we review these overarching challenges and explore potential solutions. Challenges include fragmented and unreliable funding pathways, limited access to specimens and reagents, inadequate diagnostic testing capacity at both national and community levels of healthcare and lack of incentives for companies to develop and manufacture diagnostics for priority pathogens during non-outbreak periods. Addressing these challenges in an efficient and effective way will require multiple stakeholders-public and private-coordinated in implementing a holistic approach to diagnostics preparedness. All require strengthening of healthcare system diagnostic capacity (including surveillance and education of healthcare workers), establishment of sustainable financing and market strategies and integration of diagnostics with existing mechanisms. Identifying overlaps in diagnostic development needs across different priority pathogens would allow more timely and cost-effective use of resources than a pathogen by pathogen approach; target product profiles for diagnostics should be refined accordingly. We recommend the establishment of a global forum to bring together representatives from all key stakeholders required for the response to develop a coordinated implementation plan. In addition, we should explore if and how existing mechanisms to address challenges to the vaccines sector, such as Coalition for Epidemic Preparedness Innovations and Gavi, could be expanded to cover diagnostics.