A 70-year-old man with multicentric Castleman disease (MCD) was admitted to our hospital with jaundice and ascites. Elevations in his bilirubin and interleukin-6 levels were noted, and computed tomography revealed hepatic atrophy and portal vein and bile duct disorders. Steroid therapy was started for MCD, but he died of hepatic failure. An autopsy revealed that the MCD activity was mild, but advanced fibrosis and cholestasis were observed in the liver. Mild infiltration of interleukin-6-positive plasma cells was noted in the highly fibrotic area of the liver. Although rare, liver and biliary tract damage may be also considered organ disorders of MCD.
We tried to prevent nonspecific nuclear staining (NS-NS) of picrosirius red (PSR) staining by treating the specimens with one of the heteropoly acids phosphotungstic acid (PTA). We analyzed a total of 35 cases of non-cancerous liver tissue for fibrosis and NS-NS under PSR-alone, phosphomolybdic acid (PMA)-pretreated PSR (PMA + PSR), or PTA-pretreated PSR (PTA + PSR) condition. In addition, we analyzed the photosensitivity of PMA or PTA single stain specimens. PTA + PSR significantly suppressed NS-NS compared with PSR. The color of the specimens did not change into blue by 30 times the exposure to whole slide scanner (WSS) light. The PTA + PSR condition showed the highest correlation with the Ishak score (pathological evaluation of liver fibrosis) compared with other conditions. Furthermore, Sirius Red–positive percentage (SRP%) in PSR was increased in the NS-NS observed cases. SRP% in PMA + PSR was significantly affected by WSS light exposure time. Moreover, the deposition of non-polarized PSR-stained substances (NP-PSR + S) clinging to the collagen fibers potentially explains why SRP% seemed bigger under PSR than PTA + PSR. Our protocol enabled us to analyze the whole slide image of PSR staining by high magnification, which would contribute to the accurate analysis of collagen amount in the tissue sections.
EPN-ZFTA is a rare brain tumor where prognostic factors remain unclear and no effective immunotherapy or chemotherapy is currently available. Therefore, this study investigated its clinicopathological features, evaluated the utility of MTAP and p16 IHC as surrogate markers of CDKN2A alterations, and characterized the immune microenvironment of EPN-ZFTA. Thirty surgically removed brain tumors, including 10 EPN-ZFTA, were subjected to IHC. MLPA was performed for CDKN2A HD in 20 ependymal tumors, including EPN-ZFTA. The 5-years OS and PFS of EPN-ZFTA were 90% and 60%, respectively. CDKN2A HD was detected in two cases of EPN-ZFTA; these cases were immunohistochemically negative for both MTAP and p16 and recurred earlier after surgery. As for the immune microenvironment of EPN-ZFTA, B7-H3, but not PD-L1, was positive in all cases of EPN-ZFTA; Iba-1-positive or CD204-positive macrophages were large, while infiltrating lymphocytes were small, in number in EPN-ZFTA. Collectively, these results indicate the potential of MTAP and p16 IHC as useful surrogate markers of CDKN2A HD in EPN-ZFTA, and tumor-associated macrophages, including the M2 type, may contribute to its immune microenvironment. Furthermore, the expression of B7-H3 in EPN-ZFTA may indicate the usefulness of B7-H3 as a target of immune checkpoint chemotherapy for EPN-ZFTA via B7-H3 pathway.