In Xenopus and zebrafish certain bone morphognetic proteins (BMPs), and proteins that antagonise these by preventing their interaction with receptors, constitute a morphogen system in primary dorso-ventral patterning. This system may be directly involved in the parallel processes, within mesoderm and ectoderm, whereby the boundaries of the dorsal (paraxial) mesoderm and the neural plate are established. The bird blastoderm, amenable to grafting techniques and to direct exposure to specific proteins, has provided an opportunity to explore the phylogenetic conservation of such antagonistic system. We have grafted the gastrular organiser (node) into hosts, testing the effects of prior exposure of either grafted or host tissue to Follistatin (a known antagonist of TGFbeta superfamily ligands including BMP4) or to BMP4 protein. Strong, converse effects are seen from the two agents, the most consistent being on the sizes of new dorsalised areas (second neural plates) induced in host epiblast. Follistatin also enhances extension movements due to grafts, though without clear effect upon the rostro-caudal completeness of new patterns. Neural induction in chick epiblast by grafted mouse nodes are also more extensive, after their pre-incubation in Follistatin. Follistatin potentiates other, unknown but distinctive signals coming from the node, being unable to convert other non-inducing pieces of blastoderm into organisers on grafting. Pre-incubation of early blastoderms in BMP4 has such profound effects on normal dorsal axial development that host responsiveness of these blastoderms as hosts to node grafts is difficult to assess. Follistatin has no such overt effect on host development, but greatly enhances the competence of host epiblast to grafts of untreated nodes. Early chick BMP4 and BMP7 expressions are consistent with the proposed roles, though Follistatin is probably an experimental tool only in the present study.
Cited1 and Cited2 interact with CBP and p300. CBP/p300 bind numerous proteins and evidence exists, for Cited2 at least, that Cited binding prevents the binding of other proteins to CBP/p300. Since CBP/p300 interact with many proteins, can acetylate protein and DNA, and act as a ubiquitin ligase, it is likely that Cited1 and Cited2 function at a number of sites during development. We have generated mice that carry a null mutant allele for each of these genes. Analysis of null mutant embryos demonstrates that both Cited1 and Cited2 are required for normal embryonic development and survival. Although both Cited1 and Cited2 are expressed in the developing embryo and placenta, it appears that abnormal placental development and function is the cause of embryonic death. The defect that develops in the placentas of Cited1 null mutants is not apparent until late in gestation (16.5dpc). Cited1 null mutants are smaller than controls at birth and die during the early postnatal period. The placentas of these mutants are disorganised, with spongiotrophoblasts projecting in to the labyrinthine layer. In addition, resin casts of the maternal blood spaces within these placentas revealed extremely enlarged blood sinuses. We are searching for factors that could result in the increased size of the maternal blood sinuses. Cited2 null placentas and embryos are significantly smaller than controls; mutants die 3/4 the way through gestation (15.5dpc). The null mutant placentas have proportionally fewer spongiotrophoblasts, trophoblast giant cells and invasive trophoblasts. In addition, resin casts of fetal vasculature of the placenta reveal that the capillary network is underdeveloped. Through the isolation of trophoblast stem (TS) cells we are exploring the possibility that TS cell proliferation and/or differentiation is impaired due to a lack of Cited2. We suspect that the development of the phenotype may relate to the Hypoxia Inducible Factor-1a (HIF1a) transcription factor as Cited2 expression is induced by HIF1 and it acts to negatively regulate its activity.
EDD is the mammalian ortholog of the Drosophila melanogaster hyperplastic disc gene (hyd), which is critical for cell proliferation and differentiation in flies through regulation of hedgehog and decapentaplegic signaling. Amplification and overexpression of EDD occurs frequently in several cancers, including those of the breast and ovary, and truncating mutations of EDD are also observed in gastric and colon cancer with microsatellite instability. EDD has E3 ubiquitin ligase activity, is involved in regulation of the DNA damage response, and may control hedgehog signaling, but a definitive biological role has yet to be established. To investigate the role of Edd in vivo, gene targeting was used to generate Edd knockout (EddΔ/Δ) mice. While heterozygous mice had normal development and fertility, no viable Edd-deficient embryos were observed beyond E10.5, with delayed growth and development evident from E8.5 onward. Failed yolk sac and allantoic vascular development, along with defective chorioallantoic fusion, were the primary effects of Edd deficiency. These extraembryonic defects presumably compromised fetal-maternal circulation and hence efficient exchange of nutrients and oxygen between the embryo and maternal environment, leading to a general failure of embryonic cell proliferation and widespread apoptosis. Hence, Edd has an essential role in extraembryonic development.
Anterior definitive endoderm, the future pharynx and foregut lining, emerges from the anterior primitive streak and Hensen's node as a cell monolayer that replaces hypoblast during chick gastrulation. At early head process stages (4+ to 6; Hamburger and Hamilton) it lies beneath, lateral to and ahead of the ingressed axial mesoderm. Removal of the monolayer beneath and ahead of the node at stage 4 is followed by normal development, the removed cells being replaced by further ingressing cells from the node. However, similar removal during stages 4+ and 5 results in a permanent window denuded of definitive endoderm, beneath prechordal mesoderm and a variable sector of anterior notochord. The foregut tunnel then fails to form, heart development is confined to separated lateral regions, and the neural tube undergoes no ventral flexures at the normal positions in brain structure. Reduction in forebrain pattern is evident by the 12-somite stage, with most neuraxes lacking telencephalon and eyes, while forebrain expressions of the transcription factor genes GANF and BF1, and of FGF8, are absent or severely reduced. When the foregut endoderm removal is delayed until stage 6, later forebrain pattern appears once again complete, despite lack of foregut formation, of ventral flexure and of heart migration. Important gene expressions within axial mesoderm (chordin, Shh and BMP7) appear unaffected in all embryos, including those due to be pattern-deleted, during the hours following the operation when anterior brain pattern is believed to be determined. A specific system of neural anterior patterning signals, rather than an anterior sector of the initially neurally induced area, is lost following operation. Heterotopic lower layer replacement operations strongly suggest that these patterning signals are positionally specific to anteriormost presumptive foregut. The homeobox gene Hex and the chick Frizbee homologue Crescent are both expressed prominently within anterior definitive endoderm at the time when removal of this tissue results in forebrain defects, and the possible implications of this are discussed. The experiments also demonstrate how stomodeal ectoderm, the tissue that will, much later, form Rathke's pouch and the anterior pituitary, is independently specified by anteriormost lower layer signals at an early stage.
Volume 24, no. 16, p. 7225-7234, 2004. Page 7225: The article title should read as given above.
Page 7225, abstract, line 1: “hyperplastic disc” should read “hyperplastic discs.”
Page 7225, column 1, line 2, “hyperplastic disc” should read “hyperplastic discs.”
A series of calcium spikes are induced in the mammalian egg cytoplasm at fertilisation.These calcium spikes, which last for several hours, are the necessary and sufficient signal that stimulates the egg to escape from arrest at metaphase of the second meiotic division.Metaphase arrest is achieved by preventing the destruction of cyclin B1, the regulatory component of Maturation (M-Phase) Promoting Factor, and securin, which prevents segregation of sister chromatids.Both these proteins are destroyed by tagging with ubiquitin, using an E3 ligase the Anaphase-Promoting Complex (APC).Ubiquitination tags them for proteolysis by the 26S proteasome.Work from my lab has demonstrated that the sperm calcium signal works through activating the APC, not the 26S proteasome.Although we do not know which APC component is affected by calcium, this activation appears specific to a metaphase-arrested cell cycle state.More recently we have found that the APC is differently regulated at specific points during exit from meiosis II.Before extrusion of the second polar body it is the APC activator cdc20 that regulates APC activity.However, following extrusion of the second polar body cdh1 appears the major regulator.It is probable, therefore, that the calcium spiking affects the activity of both APC cdc20 and APC cdh1 .This swap in APC activator at the time of second polar body extrusion has not been reported in eggs of other species, in fact non-mammalian eggs all lack cdh1.Since APC cdc20 and APC cdh1 have different substrate specificities, the function of APC cdh1 in mammalian eggs warrants further investigation.
Cited1 is a transcriptional cofactor that interacts with Smad4, estrogen receptors α and β, TFAP2, and CBP/p300. It is expressed in a restricted manner in the embryo as well as in extraembryonic tissues during embryonic development. In this study we report the engineering of a loss-of-function Cited1 mutation in the mouse. Cited1 null mutants show growth restriction at 18.5 days postcoitum, and most of them die shortly after birth. Half the heterozygous females, i.e., those that carry a paternally inherited wild-type Cited1 allele, are similarly affected. Cited1 is normally expressed in trophectoderm-derived cells of the placenta; however, in these heterozygous females, Cited1 is not expressed in these cells. This occurs because Cited1 is located on the X chromosome, and thus the wild-type Cited1 allele is not expressed because the paternal X chromosome is preferentially inactivated. Loss of Cited1 resulted in abnormal placental development. In mutants, the spongiotrophoblast layer is irregular in shape and enlarged while the labyrinthine layer is reduced in size. In addition, the blood spaces within the labyrinthine layer are disrupted; the maternal sinusoids are considerably larger in mutants, leading to a reduction in the surface area available for nutrient exchange. We conclude that Cited1 is required in trophoblasts for normal placental development and subsequently for embryo viability.