Purpose: To assess the phenotypic variability and natural course of inherited retinal diseases (IRDs) caused by EYS mutations. Methods: Multiethnic cohort study (N = 30) with biallelic EYS variants from a clinical IRD database (retinitis pigmentosa [RP], N = 27; cone-rod dystrophy [CRD], N = 1; and macular dystrophy, N = 2). In vitro minigene splice assay was performed to determine the effect on EYS pre-mRNA splicing of the c.1299+5_1299+8del variant in macular dystrophy patients. Results: We found 27 different EYS variants in RP patients and 7 were novel. The rate of visual field loss of the V4e isopter area was −0.84 ± 0.44 ln(deg2) per year, and the rate of visual acuity loss was 0.75 Early Treatment Diabetic Retinopathy Study letters per year. Ellipsoid zone width was correlated with area of the hyperautofluorescent ring, with rs = 0.78 and P < 0.001. Rate of decline in ellipsoid zone width was −57 ± 17 μm per year (P < 0.01) (n = 14) or −3.69% ± 0.51% from baseline per year (P < 0.001). An isolated CRD patient carried a homozygous EYS variant (c.9405T>A), previously identified in RP patients. Two siblings with macular dystrophy carried compound heterozygous EYS variants: c.1299+5_1299+8del and c.6050G>T. The former was novel and shown to result in skipping of exon 8, and the latter was a known RP variant. Conclusions: We report on EYS-associated macular dystrophy, extending the spectrum of EYS-associated IRDs. We observed heterogeneity between RP patients in age of onset and disease progression. Identical EYS variants were found in cases with RP, CRD, and macular dystrophy. Screening for EYS variants in CRD and macular dystrophy patients might increase the diagnostic yield in previously unsolved cases.
Abstract Background Rapid identification of emergency department (ED) patients with a possible COVID-19 infection is needed. PCR-testing all ED patients is neither feasible nor effective in most centers, therefore a rapid, objective, low-cost screening tool to triage ED patients is necessary. Methods Results from all routine lab tests from ED patients at the Catharina Hospital were collected from July 2019 to July 2020 and used in a statistical model to obtain the CoLab-score. The score was validated temporally and externally in three independent centers. Results The CoLab-score consists of 10 routine lab results and can be used to safely rule-out a COVID-19 infection in more than one third of ED presentations with a negative predictive value of 0.997 (95% CI: 0.994 – 0.999). Conclusions The CoLab-score is a valuable tool to rule out COVID-19, guide PCR testing and is available to any center with access to routine laboratory tests.
Leber congenital amaurosis (LCA) is a severe disorder resulting in visual impairment usually starting in the first year of life. The most frequent genetic cause of LCA is an intronic mutation in CEP290 (c.2991 + 1655A > G) that creates a cryptic splice donor site resulting in the insertion of a pseudoexon (exon X) into CEP290 mRNA. Previously, we showed that naked antisense oligonucleotides (AONs) effectively restored normal CEP290 splicing in patient-derived lymphoblastoid cells. We here explore the therapeutic potential of naked and adeno-associated virus (AAV)-packaged AONs in vitro and in vivo In both cases, AON delivery fully restored CEP290 pre-mRNA splicing, significantly increased CEP290 protein levels and rescued a ciliary phenotype present in patient-derived fibroblast cells. Moreover, administration of naked and AAV-packaged AONs to the retina of a humanized mutant Cep290 mouse model, carrying the intronic mutation, showed a statistically significant reduction of exon X-containing Cep290 transcripts, without compromising the retinal structure. Together, our data highlight the tremendous therapeutic prospective of AONs for the treatment of not only CEP290-associated LCA but potentially many other subtypes of retinal dystrophy caused by splicing mutations.
Mutations in eyes shut homolog (EYS), a gene predominantly expressed in the photoreceptor cells of the retina, are among the most frequent causes of autosomal recessive (ar) retinitis pigmentosa (RP), a progressive retinal disorder. Due to the absence of EYS in several rodent species and its retina-specific expression, still little is known about the exact function of EYS and the pathogenic mechanism underlying EYS-associated RP. We characterized eys in zebrafish, by RT-PCR analysis on zebrafish eye-derived RNA, which led to the identification of a 8,715 nucleotide coding sequence that is divided over 46 exons. The transcript is predicted to encode a 2,905-aa protein that contains 39 EGF-like domains and five laminin A G-like domains, which overall shows 33% identity with human EYS. To study the function of EYS, we generated a stable eysrmc101/rmc101 mutant zebrafish model using CRISPR/Cas9 technology. The introduced lesion is predicted to result in premature termination of protein synthesis and lead to loss of Eys function. Immunohistochemistry on retinal sections revealed that Eys localizes at the region of the connecting cilium and that both rhodopsin and cone transducin are mislocalized in the absence of Eys. Electroretinogram recordings showed diminished b-wave amplitudes in eysrmc101/rmc101 zebrafish (5 dpf) compared to age- and strain-matched wild-type larvae. In addition, decreased locomotor activity in response to light stimuli was observed in eys mutant larvae. Altogether, our study shows that absence of Eys leads to a disorganized retinal architecture and causes visual dysfunction in zebrafish.
Identifying patients with a possible SARS-CoV-2 infection in the emergency department (ED) is challenging. Symptoms differ, incidence rates vary and test capacity may be limited. As PCR-testing all ED patients is neither feasible nor effective in most centres, a rapid, objective, low-cost early warning score to triage ED patients for a possible infection is developed.
Mutations in C2orf71 are causative for autosomal recessive retinitis pigmentosa and occasionally cone-rod dystrophy. We have recently discovered that the protein encoded by this gene is important for modulation of the ciliary membrane through the recruitment of an actin assembly module, and have therefore renamed the gene to PCARE (photoreceptor cilium actin regulator). Here, we report on the identification of two copies of the c2orf71/pcare gene in zebrafish, pcare1 and pcare2. To study the role of the gene most similar to human PCARE, pcare1, we have generated a stable pcare1 mutant zebrafish model (designated pcare1 rmc100/rmc100 ) in which the coding sequence was disrupted using CRISPR/Cas9 technology. Retinas of both embryonic (5 dpf) and adult (6 mpf) pcare1 rmc100/rmc100 zebrafish display a clear disorganization of photoreceptor outer segments, resembling the phenotype observed in Pcare-/- mice. Optokinetic response and visual motor response measurements indicated visual impairment in pcare1 rmc100/rmc100 zebrafish larvae at 5 dpf. In addition, electroretinogram measurements showed decreased b-wave amplitudes in pcare1 rmc100/rmc100 zebrafish as compared to age- and strain-matched wild-type larvae, indicating a defect in the transretinal current. Altogether, our data show that lack of pcare1 causes a retinal phenotype in zebrafish and indicate that the function of the PCARE gene is conserved across species.