Wireless powered mobile edge computing (WP-MEC) has been recognized as a promising technique to provide both enhanced computational capability and sustainable energy supply to massive low-power wireless devices. However, its energy consumption becomes substantial, when the transmission link used for wireless energy transfer (WET) and for computation offloading is hostile. To mitigate this hindrance, we propose to employ the emerging technique of intelligent reflecting surface (IRS) in WP-MEC systems, which is capable of providing an additional link both for WET and for computation offloading. Specifically, we consider a multi-user scenario where both the WET and the computation offloading are based on orthogonal frequency-division multiplexing (OFDM) systems. Built on this model, an innovative framework is developed to minimize the energy consumption of the IRS-aided WP-MEC network, by optimizing the power allocation of the WET signals, the local computing frequencies of wireless devices, both the sub-band-device association and the power allocation used for computation offloading, as well as the IRS reflection coefficients. The major challenges of this optimization lie in the strong coupling between the settings of WET and of computing as well as the unit-modules constraint on IRS reflection coefficients. To tackle these issues, the technique of alternative optimization is invoked for decoupling the WET and computing designs, while two sets of locally optimal IRS reflection coefficients are provided for WET and for computation offloading separately relying on the successive convex approximation method. The numerical results demonstrate that our proposed scheme is capable of monumentally outperforming the conventional WP-MEC network without IRSs.
We focus on the realistic maximization of the uplink minimum signal-to-interference-plus-noise ratio (SINR) of a general multiple-input single-output (MISO) system assisted by an intelligent reflecting surface (IRS) in the large system limit accounting for HIs. In particular, we introduce the HIs at both the IRS (IRS-HIs) and the transceiver HIs (AT-HIs), usually neglected despite their inevitable impact. Specifically, the deterministic equivalent analysis enables the derivation of the asymptotic weighted maximum-minimum SINR with HIs by jointly optimizing the HIs-aware receiver, the transmit power, and the reflect beamforming matrix (RBM). Notably, we obtain the optimal power allocation and reflect beamforming matrix with low overhead instead of their frequent necessary computation in conventional MIMO systems based on the instantaneous channel information. Monte Carlo simulations verify the analytical results which show the insightful interplay among the key parameters and the degradation of the performance due to HIs.
The integration of sensing capabilities into communication systems, by sharing physical resources, has a significant potential for reducing spectrum, hardware, and energy costs while inspiring innovative applications. Cooperative networks, in particular, are expected to enhance sensing services by enlarging the coverage area and enriching sensing measurements, thus improving the service availability and accuracy. This paper proposes a cooperative integrated sensing and communication (ISAC) framework by leveraging information-carrying orthogonal frequency division multiplexing (OFDM) signals transmitted by access points (APs). Specifically, we propose a two-stage scheme for target localization, where communication signals are reused as sensing reference signals based on the system information shared at the central processing unit (CPU). In Stage I, we measure the ranges of scattered paths induced by targets, through the extraction of time-delay information from the received signals at APs. Then, the target locations are estimated in Stage II based on these range measurements. Considering that the scattered paths corresponding to some targets may not be detectable by all APs, we propose an effective algorithm to match the range measurements with the targets and achieve the target location estimation. Notably, by analyzing the OFDM numerologies defined in fifth generation (5G) standards, we elucidate the flexibility and consistency of performance trade-offs in both communication and sensing aspects. Finally, numerical results confirm the effectiveness of our sensing scheme and the cooperative gain of the ISAC framework.
This paper investigates the performance of a two-timescale transmission design for uplink reconfigurable intelligent surface (RIS)-aided cell-free massive multiple-input multiple-output (CF-mMIMO) systems. We consider the Rician channel model and design the passive beamforming of RISs based on the long-time statistical channel state information (CSI), while the central processing unit (CPU) utilizes the maximum ratio combining (MRC) technology to perform fully centralized processing based on the instantaneous overall channel, which are the superposition of the direct and RIS-reflected channels. Firstly, we derive the closed-form approximate expression of the uplink achievable rate for arbitrary numbers of access point (AP) antennas and RIS reflecting elements. Relying on the derived expressions, we theoretically analyze the benefits of deploying RIS into cell-free mMIMO systems and draw explicit insights. Then, based on the closed-form approximate rate expression under statistical CSI, we optimize the phase shifts of RISs based on the genetic algorithm (GA) to maximize the sum rate and minimum rate of users, respectively. Finally, the numerical results demonstrate the correctness of our derived expressions and the benefits of deploying large-size RISs into cell-free mMIMO systems. Also, we investigate the optimality and convergence behaviors of the GA to verify its effectiveness. To give more beneficial analysis, we give the closed-form expression of the energy efficiency and present numerical results to show the high energy efficiency of the system with the help of RISs. Besides, our results have revealed the benefits of distributed deployment of APs and RISs in the RIS-aided mMIMO system with cell-free networks.
In this paper, we consider an active reconfigurable intelligent surface (RIS)-aided unmanned aerial vehicle(UAV)-enabled simultaneous wireless information and power transfer(SWIPT) system with multiple ground users. Compared with the conventional passive RIS, the active RIS deploying the internally integrated amplifiers can offset part of the multiplicative fading. In this system, we deal with an optimization problem of minimizing the total energy cost of the UAV. Specifically, we alternately optimize the trajectories, the hovering time, and the reflection vectors at the active RIS by using the successive convex approximation (SCA) method. Simulation results show that the active RIS performs better in energy saving than the conventional passive RIS.
This letter investigates the power control and channel assignment problem in device-to-device (D2D) communications underlaying a non-orthogonal multiple access (NOMA) cellular network. With the successive interference cancellation decoding order constraints, our target is to maximize the sum rate of D2D pairs while guaranteeing the minimum rate requirements of NOMA-based cellular users. Specifically, the optimal conditions for power control of cellular users on each subchannel are derived first. Then, based on these results, we propose a dual-based iterative algorithm to solve the resource allocation problem. Simulation results validate the superiority of proposed resource allocation algorithm over the existing orthogonal multiple access scheme.
Millimeter wave (mmWave) massive multiple-input multiple-output (massive MIMO) is one of the most promising technologies for the fifth generation and beyond wireless communication system. However, a large number of antennas incur high power consumption and hardware costs, and high-frequency communications place a heavy burden on the analog-to-digital converters (ADCs) at the base station (BS). Furthermore, it is too costly to equipping each antenna with a high-precision ADC in a large antenna array system. It is promising to adopt low-resolution ADCs to address this problem. In this letter, we investigate the cascaded channel estimation for a mmWave massive MIMO system aided by a reconfigurable intelligent surface (RIS) with the BS equipped with few-bit ADCs. Due to the low-rank property of the cascaded channel, the estimation of the cascaded channel can be formulated as a low-rank matrix completion problem. We introduce the Bayesian optimal inference framework to tackle with the information loss caused by quantization. To implement the estimator and achieve the matrix completion, we use efficient bilinear generalized approximate message passing (BiG-AMP) algorithm. Extensive simulation results verify that our proposed method can accurately estimate the cascaded channel for the RIS-aided mmWave massive MIMO system with low-resolution ADCs.
In this paper, we study the resource allocation for a secure mission-critical IoT communication system with URLLC, where the security capacity formula under finite blocklength is adopted. In specific, we jointly optimize the power and channel bandwidth unit allocation to minimize the system power consumption subject to each device's security capacity requirement and total available channel bandwidth. We express the power for each device as a function of channel bandwidth unit, and equivalently transform the original problem into a channel bandwidth unit allocation problem. By relaxing the discrete variables into continuous ones, a sufficient condition when the transformed problem is a convex problem is provided. Efficient method is proposed to solve the problem. Simulation results confirm the performance advantage of our proposed algorithm over the benchmark method.
In this paper, the sum rate is maximized for the intelligent reflective surface (IRS) assisted terahertz (THz) non-orthogonal multiple access (NOMA) communication system. A novel algorithm is proposed to alternatively optimize the IRS phase shift, the sub-band allocation, and power control. To tackle the formulated non-convex problem, we utilize the auxiliary variables to find the feasible initialization solution meanwhile guarantee the individual rate requirements. The decoding order of successive interference cancellation (SIC) is determined according to channel gain maximization, and the IRS phase is further adjusted to improve the sum rate. A long-distance priority (LDP) algorithm is then proposed to compensate for the distance-dependent THz pathloss attenuation, and a blocking pair eliminating (BPE) algorithm is proposed to obtain a stable THz sub-band allocation. Simulation results show that the proposed scheme significantly enhances the sum-rate performance of the IRS-assisted THz NOMA networks.
This paper investigates a multi-pair device-to-device (D2D) communication system aided by an active reconfigurable intelligent surface (RIS) with phase noise and direct link. The approximate closed-form expression of the ergodic sum rate is derived over spatially correlated Rician fading channels with statistical channel state information (CSI). When the Rician factors go to infinity, the asymptotic expressions of the ergodic sum rates are presented to give insights in poor scattering environment. The power scaling law for the special case of a single D2D pair is presented without phase noise under uncorrelated Rician fading condition. Then, to solve the ergodic sum rate maximization problem, a method based on genetic algorithm (GA) is proposed for joint power control and discrete phase shifts optimization. Simulation results verify the accuracy of our derivations, and also show that the active RIS outperforms the passive RIS.