Part of the Department of Philosophy’s Project concerned the inquiry into the students’ attitudes towards religion and transcendent entities. Parallelly with tracking these stands comes the attempt of tracking the changes that occured over the period of two semestres. Therefore, this article represents both a review and an analysis of either occurence or absence of changes, with the final aim of verifying whether and to what extent the relevant BA courses dealing with the mentioned topics could influence the formation of changes in the students’ attitudes.
The coronavirus disease of 2019 (COVID-19) pandemic has impacted educational systems worldwide during 2020, including primary and secondary schooling. To enable students of a local secondary school in Brisbane, Queensland, to continue with their practical agricultural science learning and facilitate online learning, a "Grass Gazers" citizen science scoping project was designed and rapidly implemented as a collaboration between the school and a multidisciplinary university research group focused on pollen allergy. Here, we reflect on the process of developing and implementing this project from the perspective of the school and the university. A learning package including modules on pollen identification, tracking grass species, measuring field greenness, using a citizen science data entry platform, forensic palynology, as well as video guides, risk assessment and feedback forms were generated. Junior agriculture science students participated in the learning via online lessons and independent data collection in their own local neighborhood and/or school grounds situated within urban environments. The university research group and school coordinator, operating in their own distributed work environments, had to develop, source, adopt, and/or adapt material rapidly to meet the unique requirements of the project. The experience allowed two-way knowledge exchange between the secondary and tertiary education sectors. Participating students were introduced to real-world research and were able to engage in outdoor learning during a time when online, indoor, desk-based learning dominated their studies. The unique context of restrictions imposed by the social isolation policies, as well as government Public Health and Department of Education directives, allowed the team to respond by adapting teaching and research activity to develop and trial learning modules and citizen science tools. The project provided a focus to motivate and connect teachers, academic staff, and school students during a difficult circumstance. Extension of this citizen project for the purposes of research and secondary school learning has the potential to offer ongoing benefits for grassland ecology data acquisition and student exposure to real-world science.
Grass pollen is the major outdoor trigger of allergic respiratory diseases. Climate change is influencing pollen seasonality in Northern Hemisphere temperate regions, but many aspects of the effects on grass pollen remain unclear. Carbon dioxide and temperature rises could increase the distribution of subtropical grasses, however, medium term shifts in grass pollen in subtropical climates have not yet been analysed. This study investigates changes in grass pollen aerobiology in a subtropical city of Brisbane, Australia, between the two available monitoring periods, 1994-1999 and 2016-2020. Potential drivers of pollen change were examined including weather and satellite-derived vegetation indicators. The magnitude of the seasonal pollen index for grass showed almost a three-fold increase for 2016-2020 over 1994-1999. The number and proportion of high and extreme grass pollen days in the recent period increased compared to earlier monitoring. Statistically significant changes were also identified for distributions of CO2, satellite-derived seasonal vegetation health indices, and daily maximum temperatures, but not for minimum temperatures, daily rainfall, or seasonal fraction of green groundcover. Quarterly grass pollen levels were correlated with corresponding vegetation health indices, and with green groundcover fraction, suggesting that seasonal-scale plant health was higher in the latter period. The magnitude of grass pollen exposure in the subtropical region of Brisbane has increased markedly in the recent past, posing an increased environmental health threat. This study suggests the need for continuous pollen monitoring to track and respond to the possible effects of climate change on grass pollen loads.
Abstract. The vast majority of Australia's fires occur in the tropical north of the continent during the dry season. These fires are a significant source of aerosol and cloud condensation nuclei (CCN) in the region, providing a unique opportunity to investigate the biomass burning aerosol (BBA) in the absence of other sources. CCN concentrations at 0.5 % supersaturation and aerosol size and chemical properties were measured at the Australian Tropical Atmospheric Research Station (ATARS) during June 2014. CCN concentrations reached over 104 cm−3 when frequent and close fires were burning; up to 45 times higher than periods with no fires. Both the size distribution and composition of BBA appeared to significantly influence CCN concentrations. A distinct diurnal trend in the proportion of BBA activating to cloud droplets was observed, with an activation ratio of 40 % ± 20 % during the night and 60 % ± 20 % during the day. BBA was, on average, less hygroscopic during the night (κ = 0.04 ± 0.03) than during the day (κ = 0.07 ± 0.05), with a maximum typically observed just before midday. Size-resolved composition of BBA showed that organics comprised a constant 90 % of the aerosol volume for aerodynamic diameters between 100 nm and 200 nm. The photochemical oxidation of organics led to an increase in the hygroscopic growth and an increase in daytime activation ratios. Modelled CCN concentrations assuming typical continental hygroscopicities produced very large overestimations of up to 200 %. Smaller, but still significant over predictions up to ~100 % were observed using AMS and H-TDMA derived hygroscopicities as well as campaign night and day averages. The largest estimations in every case occurred during the night when the small variations in very weakly hygroscopic species corresponded to large variations in the activation diameters. Trade winds carry the smoke generated from these fires over the Timor Sea where aerosol-cloud interactions are likely to be sensitive to changes in CCN concentrations, perturbing cloud albedo and lifetime. Dry season fires in north Australia are therefore potentially very important in cloud processes in this region.
The coronavirus disease of 2019 (COVID-19) pandemic has impacted educational systems worldwide, in particular primary and secondary schooling. To enable students of the local secondary school in Brisbane, Queensland, to continue with their practical agricultural science learning and facilitate online learning, a small-scale citizen science project was designed and rapidly implemented as a collaboration between the school and a multidisciplinary university research group focused on pollen allergy. Here we reflect on the process of developing and implementing this project from the perspective of the school and the university. A learning package including modules on pollen identification, tracking grass species, measuring field greenness, using a citizen science data entry platform, forensic palynology, as well as video guides, risk assessment and feedback forms were generated. Junior agriculture science students participated in the learning via online lessons and independent data collection in their own local neighborhood and/or school grounds situated within urban environments. The project provided useful data on local distribution and flowering of grass species. The experience allowed two-way knowledge exchange between the secondary and tertiary education sectors. The unique context of restrictions imposed by the social isolation policies as well as Public Health and Department of Education directives, allowed the team to respond by adapting teaching and research activity to develop and trial learning modules and citizen science tools. The project provided a focus to motivate and connect teachers, academic staff, and school students during a difficult circumstance. Extension of this citizen project for the purposes of research and secondary school learning, has the potential to offer ongoing benefits for grassland ecology data acquisition and student exposure to real-world science.