1,4-Bis(trimethylsilyl)buta-1,3-diyne in the presence of GaCl3 reacts with aromatic hydrocarbons at −90 to −100 °C yielding 2-arylbut-1-en-3-ynes; the reactions exhibit an unusually high tendency to alkenylate the o-position of alkyl substituents; toluene, ethylbenzene and isopropylbenzene react predominantly to exclusively at the o-position while o-xylene and 1,2,3,4-tetrahydronaphthalene react at the 3 and 5-position, respectively.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
GaCl(3) catalyzes the aromatic alkylation of naphthalene or phenanthrene using cycloalkanes. The C[bond]C formation predominantly takes place at the least hindered positions of the substrates, and equatorial isomers regarding the cycloalkane moiety are generally obtained. The reaction of bicyclo[4.4.0]decane and naphthalene occurs at the 2-position of naphthalene and at the 2- or 3-carbons of the cycloalkane, and the products possess a trans configuration at the junctures and an equatorial configuration at the naphthyl groups. Notably, cis-bicyclo[4.4.0]decane turns out to be much more reactive than the trans isomer, and a turnover number "TON" up to 20 based on GaCl(3) is attained. 1,2-Dimethylcyclohexane reacts similarly, and the cis isomer is more reactive than the trans isomer. Monoalkylcycloalkanes react at the secondary carbons provided that the alkyl group is smaller than tert-butyl. Adamantanes react at the tertiary 1-position. The alkylation reaction is considered to involve the C[bond]H activation of cycloalkanes with GaCl(3) at the tertiary center followed by the migration of carbocations and electrophilic aromatic substitution yielding thermodynamically stable products. The stereochemistry of the reaction reveals that GaCl(3) activates the equatorial tertiary C[bond]H rather than the axial tertiary C[bond]H.